This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75640 91177308-0d34-0410-b5e6-96231b3b80d8
Basically, using:
lea symbol(%rip), %rax
is not valid in -static mode, because the current RIP may not be
within 32-bits of "symbol" when an app is built partially pic and
partially static. The fix for this is to compile it to:
lea symbol, %rax
It would be better to codegen this as:
movq $symbol, %rax
but that will come next.
The hard part of fixing this bug was fixing abi-isel, which was actively
testing for the wrong behavior. Also, the RUN lines are completely impossible
to understand what they are testing. To help with this, convert the -static
x86-64 codegen tests to use filecheck. This is much more stable and makes it
more clear what the codegen is expected to be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75382 91177308-0d34-0410-b5e6-96231b3b80d8
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75379 91177308-0d34-0410-b5e6-96231b3b80d8
is just a trivial wrapper around "ClassifyGlobalReference", which
stole a ton of logic from LowerGlobalAddress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75237 91177308-0d34-0410-b5e6-96231b3b80d8
With the SVR4 ABI on PowerPC, vector arguments for vararg calls are passed differently depending on whether they are a fixed or a variable argument. Variable vector arguments always go into memory, fixed vector arguments are put
into vector registers. If there are no free vector registers available, fixed vector arguments are put on the stack.
The NumFixedArgs attribute allows to decide for an argument in a vararg call whether it belongs to the fixed or variable portion of the parameter list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74764 91177308-0d34-0410-b5e6-96231b3b80d8
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74564 91177308-0d34-0410-b5e6-96231b3b80d8
fence-atomic-fence down to just the atomic op. This is possible thanks to
X86's relatively strong memory model, which guarantees that locked instructions
(which are used to implement atomics) are implicit fences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74435 91177308-0d34-0410-b5e6-96231b3b80d8
implementation primarily differs from the former in that the asmprinter
doesn't make a zillion decisions about whether or not something will be
RIP relative or not. Instead, those decisions are made by isel lowering
and propagated through to the asm printer. To achieve this, we:
1. Represent RIP relative addresses by setting the base of the X86 addr
mode to X86::RIP.
2. When ISel Lowering decides that it is safe to use RIP, it lowers to
X86ISD::WrapperRIP. When it is unsafe to use RIP, it lowers to
X86ISD::Wrapper as before.
3. This removes isRIPRel from X86ISelAddressMode, representing it with
a basereg of RIP instead.
4. The addressing mode matching logic in isel is greatly simplified.
5. The asmprinter is greatly simplified, notably the "NotRIPRel" predicate
passed through various printoperand routines is gone now.
6. The various symbol printing routines in asmprinter now no longer infer
when to emit (%rip), they just print the symbol.
I think this is a big improvement over the previous situation. It does have
two small caveats though: 1. I implemented a horrible "no-rip" modifier for
the inline asm "P" constraint modifier. This is a short term hack, there is
a much better, but more involved, solution. 2. I had to xfail an
-aggressive-remat testcase because it isn't handling the use of RIP in the
constant-pool reading instruction. This specific test is easy to fix without
-aggressive-remat, which I intend to do next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74372 91177308-0d34-0410-b5e6-96231b3b80d8
out of sync with regular cc.
The only difference between the tail call cc and the normal
cc was that one parameter register - R9 - was reserved for
calling functions through a function pointer. After time the
tail call cc has gotten out of sync with the regular cc.
We can use R11 which is also caller saved but not used as
parameter register for potential function pointers and
remove the special tail call cc on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73233 91177308-0d34-0410-b5e6-96231b3b80d8