As noted in the comment above CodeGenPrepare::OptimizeInst, which aggressively
sinks compares to reduce pressure on the condition register(s), for targets
such as PowerPC with multiple condition registers, this may not be the right
thing to do. This adds an HasMultipleConditionRegisters boolean to TLI, and
CodeGenPrepare::OptimizeInst is skipped when HasMultipleConditionRegisters is
true.
This functionality will be used by the PowerPC backend in an upcoming commit.
Especially when the PowerPC backend starts tracking individual condition
register bits as separate allocatable entities (which will happen in this
upcoming commit), this sinking from CodeGenPrepare::OptimizeInst is
significantly suboptimial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198354 91177308-0d34-0410-b5e6-96231b3b80d8
Use an if statement instead of a pair of ternary operators checking
the same condition.
Use a cheap method call rather than returning the local symbol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198351 91177308-0d34-0410-b5e6-96231b3b80d8
During the years there have been some attempts at figuring out how to
align byval arguments. A look at the commit log suggests that they
were
* Use the ABI alignment.
* When that was not sufficient for x86-64, I added the 's' specification to
DataLayout.
* When that was not sufficient Evan added the virtual getByValTypeAlignment.
* When even that was not sufficient, we just got the FE to add the alignment
to the byval.
This patch is just a simple cleanup that removes my first attempt at fixing the
problem. I also added an AArch64 implementation of getByValTypeAlignment to
make sure this patch is a nop. I also left the 's' parsing for backward
compatibility.
I will send a short email to llvmdev about the change for anyone maintaining
an out of tree target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198287 91177308-0d34-0410-b5e6-96231b3b80d8
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
with a fix to use integer 0 for DW_AT_low_pc since the relocation to the text section symbol was causing issues with COFF. Accordingly remove addLocalLabelAddress and machinery since we're not currently using it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198222 91177308-0d34-0410-b5e6-96231b3b80d8
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
They could be reproducible with explicit target.
llvm/lib/MC/WinCOFFObjectWriter.cpp:224: bool {anonymous}::COFFSymbol::should_keep() const: Assertion `Section->Number != -1 && "Sections with relocations must be real!"' failed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198208 91177308-0d34-0410-b5e6-96231b3b80d8
back to the compile unit from the aranges section is to the skeleton
unit and not the one in the dwo.
Do this by adding a method to grab a forwarded on local sym and local
section by querying the skeleton if one exists and using that. Add
a few tests to verify the relocations are back to the correct section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198202 91177308-0d34-0410-b5e6-96231b3b80d8
and construct it up front. Add address ranges at the end and a helper
routine so that we're not needlessly using an indirction in the case
of split dwarf.
Update testcases according to the new ordering of attributes on
the compile unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198196 91177308-0d34-0410-b5e6-96231b3b80d8
For AArch64 backend, if DAGCombiner see "sext(setcc)", it will
combine them together to a single setcc with extended value type.
Then if it see "zext(setcc)", it assumes setcc is Vxi1, and try to
create "(and (vsetcc), (1, 1, ...)". While setcc isn't Vxi1,
DAGcombiner will create wrong node and get wrong code emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198190 91177308-0d34-0410-b5e6-96231b3b80d8
PostGenericScheduler uses either the new machine model or the hazard
checker for top-down scheduling. Most of the infrastructure for PreRA
machine scheduling is reused.
With a some tuning, this should allow MachineScheduler to be default
for all ARM targets, including cortex-A9, using the new machine
model. Likewise, with additional tuning, it should be able to replace
PostRAScheduler for all targets.
The PostMachineScheduler pass does not currently run the
AntiDepBreaker. There is less need for it on targets that are already
running preRA MachineScheduler. I want to prove it's necessary before
committing to the maintenance burden.
The PostMachineScheduler also currently removes kill flags and adds
them all back later. This is a bit ridiculous. I'd prefer passes to
directly use a liveness utility than rely on flags.
A test case that enables this scheduler will be included in a
subsequent checkin that updates the A9 model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198122 91177308-0d34-0410-b5e6-96231b3b80d8
Factor the MachineFunctionPass into MachineSchedulerBase.
Split the DAG class into ScheduleDAGMI and SchedulerDAGMILive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198119 91177308-0d34-0410-b5e6-96231b3b80d8
just calling into MAI and is only abstracting for a single interface that
we actually need to check in multiple places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198092 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantSDNodes (or UNDEFs) into a simple BUILD_VECTOR.
For example, given the following sequence of dag nodes:
i32 C = Constant<1>
v4i32 V = BUILD_VECTOR C, C, C, C
v4i32 Result = SIGN_EXTEND_INREG V, ValueType:v4i1
The SIGN_EXTEND_INREG node can be folded into a build_vector since
the vector in input is a BUILD_VECTOR of constants.
The optimized sequence is:
i32 C = Constant<-1>
v4i32 Result = BUILD_VECTOR C, C, C, C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198084 91177308-0d34-0410-b5e6-96231b3b80d8
when you want to have the full list of addresses for a particular CU or
when you have multiple modules linked together and can't depend upon the
ordering of a single CU for begin/end ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197776 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the MachineFrameInfo API to use the new SSPLayoutKind information
produced by the StackProtector pass (instead of a boolean flag) and updates a
few pass dependencies (to preserve the SSP analysis).
The stack layout follows the same approach used prior to this change - i.e.,
only LargeArray stack objects will be placed near the canary and everything
else will be laid out normally. After this change, structures containing large
arrays will also be placed near the canary - a case previously missed by the
old implementation.
Out of tree targets will need to update their usage of
MachineFrameInfo::CreateStackObject to remove the MayNeedSP argument.
The next patch will implement the rules for sspstrong and sspreq. The end goal
is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D2158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197653 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies type unit and type unit reference creation as well as
setting the stage for inter-type hashing across type unit boundaries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197539 91177308-0d34-0410-b5e6-96231b3b80d8
This effectively backs out r197465 but leaves some of the general
fixes in place. Not all targets are ready to handle this feature. To
enable it, some infrastructure work is needed to better handle
register class constraints.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197514 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r197438 and fixes the link-time circular dependency between
IR and Support. The fix consists in moving the diagnostic support into IR.
The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197508 91177308-0d34-0410-b5e6-96231b3b80d8
Without this, MachineCSE is powerless to handle redundant operations with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It isn't clear what combinations of subregisters can legally be tied, but the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
Test case: cse-add-with-overflow.ll.
This exposed an existing bug in
PPCInstrInfo::commuteInstruction. Thanks to Rafael for the test case:
PowerPC/crash.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197465 91177308-0d34-0410-b5e6-96231b3b80d8
Re-reading the comment I updated in previous commit, it's better to make
it more explicit and avoid ambiguity more effectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197458 91177308-0d34-0410-b5e6-96231b3b80d8
The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197438 91177308-0d34-0410-b5e6-96231b3b80d8
that it coalesces normal copies.
Without this, MachineCSE is powerless to handle redundant operations
with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It
isn't clear what combinations of subregisters can legally be tied, but
the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197414 91177308-0d34-0410-b5e6-96231b3b80d8
This optional register liveness analysis pass can be enabled with either
-enable-stackmap-liveness, -enable-patchpoint-liveness, or both. The pass
traverses each basic block in a machine function. For each basic block the
instructions are processed in reversed order and if a patchpoint or stackmap
instruction is encountered the current live-out register set is encoded as a
register mask and attached to the instruction.
Later on during stackmap generation the live-out register mask is processed and
also emitted as part of the stackmap.
This information is optional and intended for optimization purposes only. This
will enable a client of the stackmap to reason about the registers it can use
and which registers need to be preserved.
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197317 91177308-0d34-0410-b5e6-96231b3b80d8
This is slightly more interesting than the previous batch of changes.
Specifically:
1. We refactor getSpillWeight to take a MachineBlockFrequencyInfo (MBFI)
object. This enables us to completely encapsulate the actual manner we
use the MachineBlockFrequencyInfo to get our spill weights. This yields
cleaner code since one does not need to fetch the actual block frequency
before getting the spill weight if all one wants it the spill weight. It
also gives us access to entry frequency which we need for our
computation.
2. Instead of having getSpillWeight take a MachineBasicBlock (as one
might think) to look up the block frequency via the MBFI object, we
instead take in a MachineInstr object. The reason for this is that the
method is supposed to return the spill weight for an instruction
according to the comments around the function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197296 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
Recommitted as r197197 to reproduce the failure and reverted as r197199
Turns out there was unstable ordering in the type unit dumping code.
Fixed by using MapVector in DWARFContext to store the debug_types
comdat sections.
Recommitted as r197210 with a fix to dumping and reverted as r197211
because I was a bit gun shy and thought I saw a failure that turned out
to be unrelated.
So here we go - once more with feeling! \o/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197275 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r197254.
This was an accidental merge of Juergen's patch. It will be checked in
shortly, but wasn't meant to go in quite yet.
Conflicts:
include/llvm/CodeGen/StackMaps.h
lib/CodeGen/StackMaps.cpp
test/CodeGen/X86/stackmap-liveness.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197260 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
Recommitted as r197197 to reproduce the failure and reverted as r197199
Turns out there was unstable ordering in the type unit dumping code.
Fixed by using MapVector in DWARFContext to store the debug_types
comdat sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197210 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
This commit originally got jumbled up with another build-breaking commit
and I can't find the failures I thought this caused anymore.
Recommitting to hopefully get some clean buildbot results to work from.
I have a sneaking suspicion there's unstable output in the comdat group
output of MCStreamer...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197197 91177308-0d34-0410-b5e6-96231b3b80d8
The assertion was checking that the virtual register VReg used to represent the
physical register PReg uses the same register class as the one passed to
MachineFunction::addLiveIn.
This is over-constraining because it is sufficient to check that the register
class of VReg (VRegRC) is a subclass of the register class of PReg (PRegRC) and
that VRegRC contains PReg.
Indeed, if VReg gets constrained because of some operation constraints
between two calls of MachineFunction::addLiveIn, the original assertion
cannot match.
This fixes <rdar://problem/15633429>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197097 91177308-0d34-0410-b5e6-96231b3b80d8
This adds two additional functions to the hazard recognizer interface. These
are optional (in the sense that the default implementations preserve the
current behavior), and used by the post-RA scheduler. Upcoming commits will use
this functionality in order to improve dispatch-group formation on the POWER7
and related cores. Dispatch groups are an odd construct: sometimes we need to
insert nops to force a new one to start (for performance reasons), and some
instructions need to appear in certain positions within a group, but the groups
are not fundamentally cycle based (they can contain instructions with data
dependencies with non-trivial latencies).
Motivation:
unsigned PreEmitNoops(SUnit *) - Used to force the post-RA scheduler to insert
nops to force a new dispatch group to begin. We already have a NoopHazard, and
this is also still needed. However, NoopHazard only causes a nop to be inserted
if there are no other available instructions, and so is not always sufficient.
The number of nops to insert depends on state that only the hazard recognizer
has, so a general callback is necessary.
bool ShouldPreferAnother(SUnit *) - Used to avoid scheduling instructions that
would start a new dispatch group when others are available that could be part
of the current dispatch group. In this case, we don't want to issue nops,
because the non-preferred instruction will implicitly start a new dispatch
group regardless.
Although the motivation for these functions is driven by the PowerPC backend,
they are completely general.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197084 91177308-0d34-0410-b5e6-96231b3b80d8
The linkers on these systems don't have anything special to do with these
symbols. Since the intent is for them to be absent from the final object,
just treat them as private.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197080 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r197073.
The test seems to be failing on some buildbots for unknown reasons.
Reverting until I can figure that out. If anyone's got a reproduction
(.s and .o together would be great) - I'd really appreciate it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197079 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197073 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombiner could fold (truncate (load)) -> smaller load if the original
load was the width of the truncation result or wider. This patch extends
it to handle cases where the original load was narrower (and so the
extension type stays the same).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197030 91177308-0d34-0410-b5e6-96231b3b80d8
This hook reverses the order of assignment for local live ranges. This
will generally allocate shorter local live ranges first. For targets with
many registers, this could reduce regalloc compile time by a large
factor. It should still achieve optimal coloring; however, it can change
register eviction decisions. It is disabled by default for two reasons:
(1) Top-down allocation is simpler and easier to debug for targets that
don't benefit from reversing the order.
(2) Bottom-up allocation could result in poor evicition decisions on some
targets affecting the performance of compiled code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197001 91177308-0d34-0410-b5e6-96231b3b80d8
This re-lands commit r196876, which was reverted in r196879.
The tests have been fixed to pass on platforms with a stack alignment
larger than 4.
Update to clang side tests will land shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196939 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196905 91177308-0d34-0410-b5e6-96231b3b80d8
For stack frames requiring realignment, three pointers may be needed:
- ebp to address incoming arguments
- esi (could be any callee-saved register) to address locals
- esp to address outgoing arguments
We would use esi unconditionally without verifying that it did not
conflict with inline assembly.
This change doesn't do the verification, it simply emits a fatal error
on functions that use stack realignment, dynamic SP adjustments, and
inline assembly.
Because stack realignment is common on Windows, we also no longer assume
that MS inline assembly clobbers esp. Instead, we analyze the inline
instructions for implicit definitions and check if esp is there. If so,
we require the use of a base pointer and consider it in the condition
above.
Mostly fixes PR16830, but we could try harder to find a non-conflicting
base pointer.
Reviewers: sunfish
Differential Revision: http://llvm-reviews.chandlerc.com/D1317
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196876 91177308-0d34-0410-b5e6-96231b3b80d8
These helper classes take care of the book-keeping the drives the
GenericScheduler heuristics. It is likely that developers writing
target-specific schedulers that work similarly to GenericScheduler
will want to use these helpers too. The immediate goal is to develop a
GenericPostScheduler that can run in place of the old PostRAScheduler,
but will use the new machine model.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196643 91177308-0d34-0410-b5e6-96231b3b80d8
This removes another case of spooky action at a distance (building the
same label names in multiple places creating an implicit dependency
between those places) and helps pave the way for type units.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196617 91177308-0d34-0410-b5e6-96231b3b80d8
This is a precursor to moving type units into the correct (debug_types)
section with comdat groups and full type unit headers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196615 91177308-0d34-0410-b5e6-96231b3b80d8
This more accurately represents the actual walk - pubnames/pubtypes are
emitted into the .o, not the .dwo, and reference the skeletons not the
full units.
Use the newly established ID->index invariant to lookup the underlying
full unit to retrieve its public names and types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196601 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies reasoning about the code and enables simple navigation
from a skeleton to its full unit. (currently there are no type unit
skeletons, so the skeleton list doesn't have the same ID == index
property)
Eventually we should get rid of this ID and just store the labels we
need as the IDs are allowing this code to create difficult to
manage/understand associations (loops over non-skeletal units are
implicitly referencing their skeletal units during pub* emission, for
example). It may be necessary to have some kind of skeleton->full unit
association and a more direct pointer or similar device would be
preferable than an index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196600 91177308-0d34-0410-b5e6-96231b3b80d8
Not only does it trigger -Wparentheses, I think the assert actually
relies on incorrect operator precedence.
Also, the grammar as questionable, but I might not know enough about the
problem at hand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196567 91177308-0d34-0410-b5e6-96231b3b80d8
This allows a target to use MI-Sched as an in-order scheduler that
will model strict resource conflicts without defining a processor
itinerary. Instead, the target can now use the new per-operand machine
model and define in-order resources with BufferSize=0. For example,
this would allow restricting the type of operations that can be formed
into a dispatch group. (Normally NumMicroOps is sufficient to enforce
dispatch groups).
If the intent is to model latency in in-order pipeline, as opposed to
resource conflicts, then a resource with BufferSize=1 should be
defined instead.
This feature is only casually tested as there are no in-tree targets
using it yet. However, Hal will be experimenting with POWER7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196517 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
This just extends the existing hack. It should be enough to get a reproducible bootstrap
on 32 bits.
I will open a bug to track getting a real fix for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196462 91177308-0d34-0410-b5e6-96231b3b80d8
DIEs already contain references directly to their DIEAbbrev, use that
instead of looking it up based on index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196446 91177308-0d34-0410-b5e6-96231b3b80d8
While we still have a few (~4) non-trivial comments with string
concatenation, etc that should remain conditionalized, these trivial
literal comments can be simplified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196416 91177308-0d34-0410-b5e6-96231b3b80d8
Since we always emit only one abbrevation section (shared by all the
compilation units in this module) there's no need for a separate label
at the start of each one (and we weren't using the CU ID anyway, so
there really was only one label). Use the section label instead and drop
the wholely unused debug_abbrev_end label.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196394 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, reuse the same MCSymbol - this should make the code easier to
follow by avoiding hard to trace dependencies between different bits of
code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196392 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful for debugging issues in the BlockFrequency implementation
since one can easily visualize where probability mass and other errors
occur in the propagation.
This is the MI version of r194654.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196183 91177308-0d34-0410-b5e6-96231b3b80d8
and emitted per function and CU. Begins coalescing ranges as a first
class entity through debug info. No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196178 91177308-0d34-0410-b5e6-96231b3b80d8
Header/cpp file rename to follow immediately - just splitting out the
commits for ease of review/reading to demonstrate that the renaming
changes are entirely mechanical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196139 91177308-0d34-0410-b5e6-96231b3b80d8
target independent.
Most of the x86 specific stackmap/patchpoint handling was necessitated by the
use of the native address-mode format for frame index operands. PEI has now
been modified to treat stackmap/patchpoint similarly to DEBUG_INFO, allowing
us to use a simple, platform independent register/offset pair for frame
indexes on stackmap/patchpoints.
Notes:
- Folding is now platform independent and automatically supported.
- Emiting patchpoints with direct memory references now just involves calling
the TargetLoweringBase::emitPatchPoint utility method from the target's
XXXTargetLowering::EmitInstrWithCustomInserter method. (See
X86TargetLowering for an example).
- No more ugly platform-specific operand parsers.
This patch shouldn't change the generated output for X86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195944 91177308-0d34-0410-b5e6-96231b3b80d8
ARanges included even extern variables referenced by pointer non-type
template parameters even though that variable isn't part of this
compilation unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195895 91177308-0d34-0410-b5e6-96231b3b80d8
We currently error in clang with:
"error: thread-local storage is unsupported for the current target", but we
can start to get the llvm level ready.
When compiling
template<typename T>
struct foo {
static __declspec(thread) int bar;
};
template<typename T>
__declspec(therad) int foo<T>::bar;
template struct foo<int>;
msvc produces
SECTION HEADER #3
.tls$ name
0 physical address
0 virtual address
4 size of raw data
12F file pointer to raw data (0000012F to 00000132)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
C0301040 flags
Initialized Data
COMDAT; sym= "public: static int foo<int>::bar" (?bar@?$foo@H@@2HA)
4 byte align
Read Write
gcc produces a ".data$__emutls_v.<symbol>" for the testcase with
__declspec(thread) replaced with thread_local.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195849 91177308-0d34-0410-b5e6-96231b3b80d8