This patch enables calls to __aeabi_idivmod when in EABI mode,
by using the remainder value returned on registers (R1),
enabled by the ARM triple "none-eabi". Note that Darwin and
GNUEABI triples will continue lowering on GNU style, that is,
using the stack for the remainder.
Still need to add SREM/UREM support fix for 64-bit lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186390 91177308-0d34-0410-b5e6-96231b3b80d8
Currently ARM is the only backend that supports FMA instructions (for at least some subtargets) but does not implement this virtual, so FMAs are never generated except from explicit fma intrinsic calls. Apparently this is due to the fact that it supports both fused (one rounding step) and unfused (two rounding step) multiply + add instructions. This patch clarifies that this the case without changing behavior by implementing the virtual function to simply return false, as the default TargetLoweringBase version does.
It is possible that some cpus perform the fused version faster than the unfused version and vice-versa, so the function implementation should be revisited if hard data is found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185994 91177308-0d34-0410-b5e6-96231b3b80d8
Change SelectionDAG::getXXXNode() interfaces as well as call sites of
these functions to pass in SDLoc instead of DebugLoc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182703 91177308-0d34-0410-b5e6-96231b3b80d8
Introduction:
In case when stack alignment is 8 and GPRs parameter part size is not N*8:
we add padding to GPRs part, so part's last byte must be recovered at
address K*8-1.
We need to do it, since remained (stack) part of parameter starts from
address K*8, and we need to "attach" "GPRs head" without gaps to it:
Stack:
|---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
[ [padding] [GPRs head] ] [ ------ Tail passed via stack ------ ...
FIX:
Note, once we added padding we need to correct *all* Arg offsets that are going
after padded one. That's why we need this fix: Arg offsets were never corrected
before this patch. See new test-cases included in patch.
We also don't need to insert padding for byval parameters that are stored in GPRs
only. We need pad only last byval parameter and only in case it outsides GPRs
and stack alignment = 8.
Though, stack area, allocated for recovered byval params, must satisfy
"Size mod 8 = 0" restriction.
This patch reduces stack usage for some cases:
We can reduce ArgRegsSaveArea since inner N*4 bytes sized byval params my be
"packed" with alignment 4 in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182237 91177308-0d34-0410-b5e6-96231b3b80d8
Now even the small structures could be passed within byval (small enough
to be stored in GPRs).
In regression tests next function prototypes are checked:
PR15293:
%artz = type { i32 }
define void @foo(%artz* byval %s)
define void @foo2(%artz* byval %s, i32 %p, %artz* byval %s2)
foo: "s" stored in R0
foo2: "s" stored in R0, "s2" stored in R2.
Next AAPCS rules are checked:
5.5 Parameters Passing, C.4 and C.5,
"ParamSize" is parameter size in 32bit words:
-- NSAA != 0, NCRN < R4 and NCRN+ParamSize > R4.
Parameter should be sent to the stack; NCRN := R4.
-- NSAA != 0, and NCRN < R4, NCRN+ParamSize < R4.
Parameter stored in GPRs; NCRN += ParamSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181148 91177308-0d34-0410-b5e6-96231b3b80d8
1. VarArgStyleRegisters: functionality that emits "store" instructions for byval regs moved out into separated method "StoreByValRegs". Before this patch VarArgStyleRegisters had confused use-cases. It was used for both variadic functions and for regular functions with byval parameters. In last case it created new stack-frame and registered it as VarArg frame, that is wrong.
This patch replaces VarArgsStyleRegisters usage for byval parameters with StoreByValRegs method.
2. In ARMMachineFunctionInfo, "get/setVarArgsRegSaveSize" was renamed to "get/setArgRegsSaveSize". By the same reason. Sometimes it was used for variadic functions, and sometimes for byval parameters in regular functions. Actually, this property means the size of registers, that keeps arguments, and thats why it was renamed.
3. In ARMISelLowering.cpp, ARMTargetLowering class, in methods computeRegArea and StoreByValRegs, VARegXXXXXX was renamed to ArgRegsXXXXXX still by the same reasons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180774 91177308-0d34-0410-b5e6-96231b3b80d8
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170104 91177308-0d34-0410-b5e6-96231b3b80d8
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169959 91177308-0d34-0410-b5e6-96231b3b80d8
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169954 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarTargetTransformInfo::getIntImmCost() instead. "Legal" is a poorly defined
term for something like integer immediate materialization. It is always possible
to materialize an integer immediate. Whether to use it for memcpy expansion is
more a "cost" conceern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169929 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169837 91177308-0d34-0410-b5e6-96231b3b80d8
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169791 91177308-0d34-0410-b5e6-96231b3b80d8
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169536 91177308-0d34-0410-b5e6-96231b3b80d8
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169224 91177308-0d34-0410-b5e6-96231b3b80d8
Removed extra stack frame object for fixed byval arguments,
VarArgsStyleRegisters invocation was reworked due to some improper usage in
past. PR14099 also demonstrates it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166273 91177308-0d34-0410-b5e6-96231b3b80d8
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166018 91177308-0d34-0410-b5e6-96231b3b80d8
SchedulerDAGInstrs::buildSchedGraph ignores dependencies between FixedStack
objects and byval parameters. So loading byval parameters from stack may be
inserted *before* it will be stored, since these operations are treated as
independent.
Fix:
Currently ARMTargetLowering::LowerFormalArguments saves byval registers with
FixedStack MachinePointerInfo. To fix the problem we need to store byval
registers with MachinePointerInfo referenced to first the "byval" parameter.
Also commit adds two new fields to the InputArg structure: Function's argument
index and InputArg's part offset in bytes relative to the start position of
Function's argument. E.g.: If function's argument is 128 bit width and it was
splitted onto 32 bit regs, then we got 4 InputArg structs with same arg index,
but different offset values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165616 91177308-0d34-0410-b5e6-96231b3b80d8
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163136 91177308-0d34-0410-b5e6-96231b3b80d8
For example, the ARM target does not have efficient ISel handling for vector
selects with scalar conditions. This patch adds a TLI hook which allows the
different targets to report which selects are supported well and which selects
should be converted to CF duting codegen prepare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163093 91177308-0d34-0410-b5e6-96231b3b80d8
architecture
It broke MultiSource/Applications/JM/ldecod/ldecod on armv7 thumb O0 g and armv7
thumb O3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161736 91177308-0d34-0410-b5e6-96231b3b80d8
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161581 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161232 91177308-0d34-0410-b5e6-96231b3b80d8
We turned off the CMN instruction because it had semantics which we weren't
getting correct. If we are comparing with an immediate, then it's okay to use
the CMN instruction.
<rdar://problem/7569620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158302 91177308-0d34-0410-b5e6-96231b3b80d8
We handle struct byval by inserting a pseudo op, which will be expanded to a
loop at ExpandISelPseudos.
A separate patch for clang will be submitted to enable struct byval.
rdar://9877866
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157793 91177308-0d34-0410-b5e6-96231b3b80d8
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157479 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the logic for selecting a TLS model to a single place,
instead of the previous three (ARM, Mips, and X86 which already
uses this function).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156162 91177308-0d34-0410-b5e6-96231b3b80d8
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154370 91177308-0d34-0410-b5e6-96231b3b80d8