(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135468 91177308-0d34-0410-b5e6-96231b3b80d8
errors like the one corrected by r135261. Migrate all LLVM callers of the old
constructor to the new one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135431 91177308-0d34-0410-b5e6-96231b3b80d8
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134829 91177308-0d34-0410-b5e6-96231b3b80d8
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134127 91177308-0d34-0410-b5e6-96231b3b80d8
As an ExecutionEngine class function, its definition
really belongs in ExecutionEngine.cpp, not JIT.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131320 91177308-0d34-0410-b5e6-96231b3b80d8
In particular, into EngineBuilder. This should only impact
the private API between the EE and EB classes, not external
clients, since JITCtor and MCJITCtor are both protected members.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131317 91177308-0d34-0410-b5e6-96231b3b80d8
This prepares for making JITCtor/MCJITCtor take a
TargetMachine* directly from clients like EngineBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131316 91177308-0d34-0410-b5e6-96231b3b80d8
actually takes rather than how much memory was allocated for it. This
is more accurate and should help the manager pack things more effectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131305 91177308-0d34-0410-b5e6-96231b3b80d8
erroring out completely. Some modules produce sections that aren't referenced,
so it's friendlier to clients like LLDB to just skip them, at least for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131243 91177308-0d34-0410-b5e6-96231b3b80d8
As an ExecutionEngine class function, its definition
really belongs in ExecutionEngine.cpp, not JIT.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131027 91177308-0d34-0410-b5e6-96231b3b80d8
In particular, into EngineBuilder. This should only impact
the private API between the EE and EB classes, not external
clients, since JITCtor and MCJITCtor are both protected members.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131026 91177308-0d34-0410-b5e6-96231b3b80d8
This prepares for making JITCtor/MCJITCtor take a
TargetMachine* directly from clients like EngineBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131025 91177308-0d34-0410-b5e6-96231b3b80d8
a bit more sinister as the memset doesn't do what the constructor does.
There seems to be a cleaner solution than a cast here though, instead we
can point the memset destination into the union its actually trying to
clear.
An alternative is to point to the Untyped member of this union. Review
appreciated, and if that is cleaner I'm happy to switch. All of these
should be functionally equivalent to the original code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130395 91177308-0d34-0410-b5e6-96231b3b80d8
Add handling for tracking the relocations on symbols and resolving them.
Keep track of the relocations even after they are resolved so that if
the RuntimeDyld client moves the object, it can update the address and any
relocations to that object will be updated.
For our trival object file load/run test harness (llvm-rtdyld), this enables
relocations between functions located in the same object module. It should
be trivially extendable to load multiple objects with mutual references.
As a simple example, the following now works (running on x86_64 Darwin 10.6):
$ cat t.c
int bar() {
return 65;
}
int main() {
return bar();
}
$ clang t.c -fno-asynchronous-unwind-tables -o t.o -c
$ otool -vt t.o
t.o:
(__TEXT,__text) section
_bar:
0000000000000000 pushq %rbp
0000000000000001 movq %rsp,%rbp
0000000000000004 movl $0x00000041,%eax
0000000000000009 popq %rbp
000000000000000a ret
000000000000000b nopl 0x00(%rax,%rax)
_main:
0000000000000010 pushq %rbp
0000000000000011 movq %rsp,%rbp
0000000000000014 subq $0x10,%rsp
0000000000000018 movl $0x00000000,0xfc(%rbp)
000000000000001f callq 0x00000024
0000000000000024 addq $0x10,%rsp
0000000000000028 popq %rbp
0000000000000029 ret
$ llvm-rtdyld t.o -debug-only=dyld ; echo $?
Function sym: '_bar' @ 0
Function sym: '_main' @ 16
Extracting function: _bar from [0, 15]
allocated to 0x100153000
Extracting function: _main from [16, 41]
allocated to 0x100154000
Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000)
Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4).
loaded '_main' at: 0x100154000
65
$
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129388 91177308-0d34-0410-b5e6-96231b3b80d8
mean that it has to be ConstantArray of ConstantStruct. We might have
ConstantAggregateZero, at either level, so don't crash on that.
Also, semi-deprecate the sentinal value. The linker isn't aware of sentinals so
we end up with the two lists appended, each with their "sentinals" on them.
Different parts of LLVM treated sentinals differently, so make them all just
ignore the single entry and continue on with the rest of the list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129307 91177308-0d34-0410-b5e6-96231b3b80d8
Teach 32-bit section loading to use the Memory Manager interface, just like
the 64-bit loading does. Tidy up a few other things here and there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129138 91177308-0d34-0410-b5e6-96231b3b80d8
Start teaching the runtime Dyld interface to use the memory manager API
for allocating space. Rather than mapping directly into the MachO object,
we extract the payload for each object and copy it into a dedicated buffer
allocated via the memory manager. For now, just do Segment64, so this works
on x86_64, but not yet on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128973 91177308-0d34-0410-b5e6-96231b3b80d8
The JITMemory manager references LLVM IR constructs directly, while the
runtime Dyld works at a lower level and can handle objects which may not
originate from LLVM IR. Introduce a new layer for the memory manager to
handle the interface between them. For the MCJIT, this layer will be almost
entirely simply a call-through w/ translation between the IR objects and
symbol names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128851 91177308-0d34-0410-b5e6-96231b3b80d8