requirement when creating stack objects in MachineFrameInfo.
Add CreateStackObjectWithMinAlign to throw error when the minimal alignment
can't be achieved and to clamp the alignment when the preferred alignment
can't be achieved. Same is true for CreateVariableSizedObject.
Will not emit error in CreateSpillStackObject or CreateStackObject.
As long as callers of CreateStackObject do not assume the object will be
aligned at the requested alignment, we should not have miscompile since
later optimizations which look at the object's alignment will have the correct
information.
rdar://12713765
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172027 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible to build MI bundles that don't begin with a BUNDLE
header. Add support for such bundles, counting all instructions inside
the bundle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171985 91177308-0d34-0410-b5e6-96231b3b80d8
This was an experimental option, but needs to be defined
per-target. e.g. PPC A2 needs to aggressively hide latency.
I converted some in-order scheduling tests to A2. Hal is working on
more test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171946 91177308-0d34-0410-b5e6-96231b3b80d8
one file where it is called as a static function. Nuke the declaration
and the definition in lib/CodeGen, along with the include of
SelectionDAG.h from this file.
There is no dependency edge from lib/CodeGen to
lib/CodeGen/SelectionDAG, so it isn't valid for a routine in lib/CodeGen
to reference the DAG. There is a dependency from
lib/CodeGen/SelectionDAG on lib/CodeGen. This breaks one violation of
this layering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171842 91177308-0d34-0410-b5e6-96231b3b80d8
Some compilers might be confused if bool were potentially signed integer. In my case, g++-4.7.0 miscompiled CodeGen/ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171727 91177308-0d34-0410-b5e6-96231b3b80d8
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
pass into the SelectionDAG itself rather than snooping on the
implementation of that pass as exposed by the TargetMachine. This
removes the last direct client of the ScalarTargetTransformInfo class
outside of the TTI pass implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171625 91177308-0d34-0410-b5e6-96231b3b80d8
The series of patches leading up to this one makes llc -O0 run 8% faster.
When deallocating a MachineFunction, there is no need to visit all
MachineInstr and MachineOperand objects to deallocate them. All their
memory come from a BumpPtrAllocator that is about to be purged, and they
have empty destructors anyway.
This only applies when deallocating the MachineFunction.
DeleteMachineInstr() should still be used to recycle MI memory during
the codegen passes.
Remove the LeakDetector support for MachineInstr. I've never seen it
used before, and now it definitely doesn't work. With this patch, leaked
MachineInstrs would be much less of a problem since all of their memory
will be reclaimed by ~MachineFunction().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171599 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of an std::vector<MachineOperand>, use MachineOperand arrays
from an ArrayRecycler living in MachineFunction.
This has several advantages:
- MachineInstr now has a trivial destructor, making it possible to
delete them in batches when destroying MachineFunction. This will be
enabled in a later patch.
- Bypassing malloc() and free() can be faster, depending on the system
library.
- MachineInstr objects and their operands are allocated from the same
BumpPtrAllocator, so they will usually be next to each other in
memory, providing better locality of reference.
- Reduce MachineInstr footprint. A std::vector is 24 bytes, the new
operand array representation only uses 8+4+1 bytes in MachineInstr.
- Better control over operand array reallocations. In the old
representation, the use-def chains would be reordered whenever a
std::vector reached its capacity. The new implementation never changes
the use-def chain order.
Note that some decisions in the code generator depend on the use-def
chain orders, so this patch may cause different assembly to be produced
in a few cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171598 91177308-0d34-0410-b5e6-96231b3b80d8
This function works like memmove() for MachineOperands, except it also
updates any use-def chains containing the moved operands.
The use-def chains are updated without affecting the order of operands
in the list. That isn't possible when using the
removeRegOperandFromUseList() and addRegOperandToUseList() functions.
Callers to follow soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171597 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
re-use that for SlotIndexes. This way other users who want half-open
semantics can share the implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171158 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions that are inserted in a basic block can still be decorated
with addOperand(MO).
Make the two-argument addOperand() function contain the actual
implementation. This function will now always have a valid MF reference
that it can use for memory allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170798 91177308-0d34-0410-b5e6-96231b3b80d8
This function is often used to decorate dangling instructions, so a
context reference is required to allocate memory for the operands.
Also add a corresponding MachineInstrBuilder method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170797 91177308-0d34-0410-b5e6-96231b3b80d8
This is supposed to be a mechanical change with no functional effects.
InstrEmitter can generate all types of MachineOperands which revealed
that MachineInstrBuilder was missing a few methods, added by this patch.
Besides providing a context pointer to MI::addOperand(),
MachineInstrBuilder seems like a better fit for this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170712 91177308-0d34-0410-b5e6-96231b3b80d8
Use the version that also takes an MF reference instead.
It would technically be possible to extract an MF reference from the MI
as MI->getParent()->getParent(), but that would not work for MIs that
are not inserted into any basic block.
Given the reasonably small number of places this constructor was used at
all, I preferred the compile time check to a run time assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170588 91177308-0d34-0410-b5e6-96231b3b80d8
Just like for addMemOperand(), the function pointer provides a context
for allocating memory. This will make it possible to use a better memory
allocation strategy for the MI operand list, which is currently a slow
std::vector.
Most calls to addOperand() come from MachineInstrBuilder, so give that
class an MF reference as well. Code using BuildMI() won't need changing
at all since the MF reference is already required to allocate a
MachineInstr.
Future patches will fix code that calls MI::addOperand(Op) directly, as
well as code that uses the now deprecated MachineInstrBuilder(MI)
constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170574 91177308-0d34-0410-b5e6-96231b3b80d8
The bundle flags are now maintained by the slightly higher-level
functions bundleWithPred() / bundleWithSucc() which enforce consistent
bundle flags between neighboring instructions.
See also MIBundleBuilder for an even higher-level approach to building
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170475 91177308-0d34-0410-b5e6-96231b3b80d8
The bundle_iterator::operator++ function now doesn't need to dig out the
basic block and check against end(). It can use the isBundledWithSucc()
flag to find the last bundled instruction safely.
Similarly, MachineInstr::isBundled() no longer needs to look at
iterators etc. It only has to look at flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170473 91177308-0d34-0410-b5e6-96231b3b80d8
The bundle-related MI flags need to be kept in sync with the neighboring
instructions. Don't allow the bulk flag-setting setFlags() function to
change them.
Also don't copy MI flags when cloning an instruction. The clone's bundle
flags will be set when it is explicitly inserted into a bundle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170459 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the instr_iterator versions of the splice() functions. It doesn't
seem useful to be able to splice sequences of instructions that don't
consist of full bundles.
The normal splice functions that take MBB::iterator arguments are not
changed, and they can move whole bundles around without any problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170456 91177308-0d34-0410-b5e6-96231b3b80d8
The normal insert() function takes an MBB::iterator position, and
inserts a stand-alone MachineInstr as before.
The insert() function that takes an MBB::instr_iterator position can
insert instructions inside a bundle, and will now update the bundle
flags correctly when that happens.
When the insert position is between two bundles, it is unclear whether
the instruction should be appended to the previous bundle, prepended to
the next bundle, or stand on its own. The MBB::insert() function doesn't
bundle the instruction in that case, use the MIBundleBuilder class for
that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170437 91177308-0d34-0410-b5e6-96231b3b80d8
Most code is oblivious to bundles and uses the MBB::iterator which only
visits whole bundles. MBB::erase() operates on whole bundles at a time
as before.
MBB::remove() now refuses to remove bundled instructions. It is not safe
to remove all instructions in a bundle without deleting them since there
is no way of returning pointers to all the removed instructions.
MBB::remove_instr() and MBB::erase_instr() will now update bundle flags
correctly, lifting individual instructions out of bundles while leaving
the remaining bundle intact.
The MachineInstr convenience functions are updated so
eraseFromParent() erases a whole bundle as before
eraseFromBundle() erases a single instruction, leaving the rest of its bundle.
removeFromParent() refuses to operate on bundled instructions, and
removeFromBundle() lifts a single instruction out of its bundle.
These functions will no longer accidentally split or coalesce bundles -
bundle flags are updated to preserve the existing bundling, and explicit
bundleWith* / unbundleFrom* functions should be used to change the
instruction bundling.
This API update is still a work in progress. I am going to update APIs
first so they maintain bundle flags automatically when possible. Then
I'll add stricter verification of the bundle flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170384 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170104 91177308-0d34-0410-b5e6-96231b3b80d8
Also add an MIBundleBuilder constructor that takes an existing bundle.
Together these functions make it possible to add instructions to
existing bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170063 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169837 91177308-0d34-0410-b5e6-96231b3b80d8
This shouldn't affect codegen for -O0 compiles as tail call markers are not
emitted in unoptimized compiles. Testing with the external/internal nightly
test suite reveals no change in compile time performance. Testing with -O1,
-O2 and -O3 with fast-isel enabled did not cause any compile-time or
execution-time failures. All tests were performed on my x86 machine.
I'll monitor our arm testers to ensure no regressions occur there.
In an upcoming clang patch I will be marking the objc_autoreleaseReturnValue
and objc_retainAutoreleaseReturnValue as tail calls unconditionally. While
it's theoretically true that this is just an optimization, it's an
optimization that we very much want to happen even at -O0, or else ARC
applications become substantially harder to debug.
Part of rdar://12553082
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169796 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a work in progress. The purpose is to make bundling and
unbundling operations explicit, and to catch errors where bundles are
broken or created inadvertently.
The old IsInsideBundle flag is replaced by two MI flags: BundledPred
which has the same meaning as IsInsideBundle, and BundledSucc which is
set on instructions that are bundled with a successor. Having two flags
provdes redundancy to detect when a bundle is inadvertently torn by a
splice() or insert(), and it makes it possible to write bundle iterators
that don't need to peek at adjacent instructions.
The new flags can't be manipulated directly (once setIsInsideBundle is
gone). Instead there are MI functions to make and break bundle bonds.
The setIsInsideBundle function will be removed in a future commit. It
should be replaced by bundleWithPred().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169583 91177308-0d34-0410-b5e6-96231b3b80d8