RISBG can handle some ANDs for which no AND IMMEDIATE exists.
It also acts as a three-operand AND for some cases where an
AND IMMEDIATE could be used instead.
It might be worth adding a pass to replace RISBG with AND IMMEDIATE
in cases where the register operands end up being the same and where
AND IMMEDIATE is smaller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186072 91177308-0d34-0410-b5e6-96231b3b80d8
RISBG has three 8-bit operands (I3, I4 and I5). I'd originally
restricted all three to 6 bits, since that's the only range we intended
to use at the time. However, the top bit of I4 acts as a "zero" flag for
RISBG, while the top bit of I3 acts as a "test" flag for RNSBG & co.
This patch therefore allows them to have the full 8-bit range.
I've left the fifth operand as a 6-bit value for now since the
upper 2 bits have no defined meaning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186070 91177308-0d34-0410-b5e6-96231b3b80d8
predecessors of the two blocks it is attempting to merge supply the
same incoming values to any phi in the successor block. This change
allows merging in the case where there is one or more incoming values
that are undef. The undef values are rewritten to match the non-undef
value that flows from the other edge. Patch by Mark Lacey.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186069 91177308-0d34-0410-b5e6-96231b3b80d8
When computing currently-live registers, the register scavenger excludes undef
uses. As a result, undef uses are ignored when computing the restore points of
registers spilled into the emergency slots. While the register scavenger
normally excludes from consideration, when scavenging, registers used by the
current instruction, we need to not exclude undef uses. Otherwise, we might end
up requiring more emergency spill slots than we have (in the case where the
undef use *is* the currently-spilled register).
Another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186067 91177308-0d34-0410-b5e6-96231b3b80d8
Without the changes introduced into this patch, if TRE saw any allocas at all,
TRE would not perform TRE *or* mark callsites with the tail marker.
Because TRE runs after mem2reg, this inadequacy is not a death sentence. But
given a callsite A without escaping alloca argument, A may not be able to have
the tail marker placed on it due to a separate callsite B having a write-back
parameter passed in via an argument with the nocapture attribute.
Assume that B is the only other callsite besides A and B only has nocapture
escaping alloca arguments (*NOTE* B may have other arguments that are not passed
allocas). In this case not marking A with the tail marker is unnecessarily
conservative since:
1. By assumption A has no escaping alloca arguments itself so it can not
access the caller's stack via its arguments.
2. Since all of B's escaping alloca arguments are passed as parameters with
the nocapture attribute, we know that B does not stash said escaping
allocas in a manner that outlives B itself and thus could be accessed
indirectly by A.
With the changes introduced by this patch:
1. If we see any escaping allocas passed as a capturing argument, we do
nothing and bail early.
2. If we do not see any escaping allocas passed as captured arguments but we
do see escaping allocas passed as nocapture arguments:
i. We do not perform TRE to avoid PR962 since the code generator produces
significantly worse code for the dynamic allocas that would be created
by the TRE algorithm.
ii. If we do not return twice, mark call sites without escaping allocas
with the tail marker. *NOTE* This excludes functions with escaping
nocapture allocas.
3. If we do not see any escaping allocas at all (whether captured or not):
i. If we do not have usage of setjmp, mark all callsites with the tail
marker.
ii. If there are no dynamic/variable sized allocas in the function,
attempt to perform TRE on all callsites in the function.
Based off of a patch by Nick Lewycky.
rdar://14324281.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186057 91177308-0d34-0410-b5e6-96231b3b80d8
I had thought that these tests could be target-neutral, but in practice this is
not the case (on some targets, like Hexagon and Darwin), they trigger an assert
(a different assert than the one that r186044 fixes).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186051 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason, the Hexagon backend does not reject these invalid static
initializer expressions, but instead crashes in AsmPrinter::EmitGlobalConstant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186045 91177308-0d34-0410-b5e6-96231b3b80d8
A non-constant-foldable static initializer expression containing insertvalue or
extractvalue had been causing an assert:
Constants.cpp:1971: Assertion `FC && "ExtractValue constant expr couldn't be
folded!"' failed.
Now we report a more-sensible "Unsupported expression in static initializer"
error instead.
Fixes PR15417.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186044 91177308-0d34-0410-b5e6-96231b3b80d8
It is not reliable to depend on the output of llvm_unreachable. The original
change will have proper tests when llvm-ar moves to lib/Object (soon).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186043 91177308-0d34-0410-b5e6-96231b3b80d8
There is no lib/Archive anymore and some archive tests were in test/Archive and
others in test/Object. Since archive is just one of the formats supported by
lib/Object, test/Object is probably the best location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186038 91177308-0d34-0410-b5e6-96231b3b80d8
Patch from Игорь Пашев (I do hope we support utf-8 commit messages; I
also hope he'll forgive me for transliterating it as Igor Pashev in
case things go horribly wrong).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186034 91177308-0d34-0410-b5e6-96231b3b80d8
Enough for the radeonsi driver to use it for calculating derivatives.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186012 91177308-0d34-0410-b5e6-96231b3b80d8
Propagate the fix from r185712 to Thumb2 codegen as well. Original
commit message applies here as well:
A "pkhtb x, x, y asr #num" uses the lower 16 bits of "y asr #num" and
packs them in the bottom half of "x". An arithmetic and logic shift are
only equivalent in this context if the shift amount is 16. We would be
shifting in ones into the bottom 16bits instead of zeros if "y" is
negative.
rdar://14338767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185982 91177308-0d34-0410-b5e6-96231b3b80d8
Change the informal convention of DBG_VALUE machine instructions so that
we can express a register-indirect address with an offset of 0.
The old convention was that a DBG_VALUE is a register-indirect value if
the offset (operand 1) is nonzero. The new convention is that a DBG_VALUE
is register-indirect if the first operand is a register and the second
operand is an immediate. For plain register values the combination reg,
reg is used. MachineInstrBuilder::BuildMI knows how to build the new
DBG_VALUES.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185966 91177308-0d34-0410-b5e6-96231b3b80d8
Because integer BUILD_VECTOR operands may have a larger type than the result's
vector element type, and all operands must have the same type, when widening a
BUILD_VECTOR node by adding UNDEFs, we cannot use the vector element type, but
rather must use the type of the existing operands.
Another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185960 91177308-0d34-0410-b5e6-96231b3b80d8
A more complete example of the bug in PR16556 was recently provided,
showing that the previous fix was not sufficient. The previous fix is
reverted herein.
The real problem is that ReplaceNodeResults() uses LowerFP_TO_INT as
custom lowering for FP_TO_SINT during type legalization, without
checking whether the input type is handled by that routine.
LowerFP_TO_INT requires the input to be f32 or f64, so we fail when
the input is ppcf128.
I'm leaving the test case from the initial fix (r185821) in place, and
adding the new test as another crash-only check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185959 91177308-0d34-0410-b5e6-96231b3b80d8
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185956 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution::getSignedRange uses ComputeNumSignBits from ValueTracking on
ashr instructions. ComputeNumSignBits can return zero, but this case was not
handled correctly by the code in getSignedRange which was calling:
APInt::getSignedMinValue(BitWidth).ashr(NS - 1)
with NS = 0, resulting in an assertion failure in APInt::ashr.
Now, we just return the conservative result (as with NS == 1).
Another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185955 91177308-0d34-0410-b5e6-96231b3b80d8
(add nsw x, (and x, y)) isn't a power of two if x is zero, it's zero
(add nsw x, (xor x, y)) isn't a power of two if y has bits set that aren't set in x
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185954 91177308-0d34-0410-b5e6-96231b3b80d8
When folding sub x, x (and other similar constructs), where x is a vector, the
result is a vector of zeros. After type legalization, make sure that the input
zero elements have a legal type. This type may be larger than the result's
vector element type.
This was another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185949 91177308-0d34-0410-b5e6-96231b3b80d8
In the commit message to r185476 I wrote:
>The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
>correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
>This causes some confusion with the asm parser, since VK_PPC_TLSGD
>is output as @tlsgd, which is then read back in as VK_TLSGD.
>
>To avoid this confusion, this patch removes the PowerPC-specific
>modifiers and uses the generic modifiers throughout. (The only
>drawback is that the generic modifiers are printed in upper case
>while the usual convention on PowerPC is to use lower-case modifiers.
>But this is just a cosmetic issue.)
This was unfortunately incorrect, there is is fact another,
serious drawback to using the default VK_TLSLD/VK_TLSGD
variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT
to return true, which in turn causes the ELFObjectWriter to emit
an undefined reference to _GLOBAL_OFFSET_TABLE_.
This is a problem on powerpc64, because it uses the TOC instead
of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_,
so the symbol remains undefined. This means shared libraries
using TLS built with the integrated assembler are currently
broken.
While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation
probably ought to be properly fixed at some point, for now I'm
simply reverting the r185476 commit. Now this in turn exposes
the breakage of handling @tlsgd/@tlsld in the asm parser that
this check-in was originally intended to fix.
To avoid this regression, I'm also adding a different fix for
this problem: while common code now parses @tlsgd as VK_TLSGD,
a special hack in the asm parser translates this code to the
platform-specific VK_PPC_TLSGD that the back-end now expects.
While this is not really pretty, it's self-contained and
shouldn't hurt anything else for now. One the underlying
problem is fixed, this hack can be reverted again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
Test is not included as it is several 1000 lines long.
To test this functionnality, a test case must generate at least 2 ALU clauses,
where an ALU clause is ~110 instructions long.
NOTE: This is a candidate for the stable branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185943 91177308-0d34-0410-b5e6-96231b3b80d8