- Do not clobber al during variadic calls, this is AMD64 ABI-only feature
- Emit wincall64, where necessary
Patch by Cameron Esfahani!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111289 91177308-0d34-0410-b5e6-96231b3b80d8
rip out the implementation of X86InstrInfo::GetInstSizeInBytes.
The code being ripped out just implemented a copy and hacked up
version of the (old) instruction encoder, and is buggy and
terrible in other ways. Since "GetInstSizeInBytes" is really
only there to support the JIT's "NeedsExactSize" hook (which
noone is using), just rip out the code. I will rip out the
NeedsExactSize hook next.
This resolves rdar://7617809 - switch X86InstrInfo::GetInstSizeInBytes to use X86MCCodeEmitter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109149 91177308-0d34-0410-b5e6-96231b3b80d8
pass that inserted it.
It is no longer necessary to limit the live ranges of FP registers to a single
basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108536 91177308-0d34-0410-b5e6-96231b3b80d8
like all other instructions, even though a segment is not
allowed. This resolves a bunch of gross hacks in the
encoder and makes LEA more consistent with the rest of the
instruction set.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107934 91177308-0d34-0410-b5e6-96231b3b80d8
an MCSymbol. Make the EH_LABEL MachineInstr hold its label
with an MCSymbol instead of ID. Fix a bug in MMI.cpp which
would return labels named "Label4" instead of "label4".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98463 91177308-0d34-0410-b5e6-96231b3b80d8
instead of label ID's. This cleans up and regularizes a bunch
of code and makes way for future progress.
Unfortunately, this pointed out to me that JITDwarfEmitter.cpp
is largely copy and paste from DwarfException/MachineModuleInfo
and other places. This is very sad and disturbing. :(
One major change here is that TidyLandingPads moved from being
called in DwarfException::BeginFunction to being called in
DwarfException::EndFunction. There should not be any
functionality change from doing this, but I'm not an EH expert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98459 91177308-0d34-0410-b5e6-96231b3b80d8
We still have the templated X86 JIT emitter, *and* the
almost-copy in X86InstrInfo for getting instruction sizes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96059 91177308-0d34-0410-b5e6-96231b3b80d8
r12b, etc) also encodes to a R/M value of 4, which is just
as illegal as ESP/RSP for the non-sib version an address.
This fixes x86-64 jit miscompilations of a bunch of programs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95866 91177308-0d34-0410-b5e6-96231b3b80d8
in X86-32 mode. This is still required in x86-64 mode to avoid
forming [disp+rip] encoding. Rewrite the SIB byte decision logic
to be actually understandable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95693 91177308-0d34-0410-b5e6-96231b3b80d8
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8
Instruction selection for X86 now can choose an instruction
sequence that will fit any address of any symbol, no matter
the pointer width. X86-64 uses a mov+call-via-reg sequence
for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95323 91177308-0d34-0410-b5e6-96231b3b80d8
MachineFunctionAnalysis dole them out, instead of having
AsmPrinter do both. Have the AsmPrinter::SetupMachineFunction
method set the 'AsmPrinter::MF' variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94509 91177308-0d34-0410-b5e6-96231b3b80d8
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89711 91177308-0d34-0410-b5e6-96231b3b80d8
The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88984 91177308-0d34-0410-b5e6-96231b3b80d8
MachineRelocations, "stub" always refers to a far-call stub or a
load-a-faraway-global stub, so this patch adds "Far" to the term. (Other stubs
are used for lazy compilation and dlsym address replacement.) The variable was
also inconsistent between the positive and negative sense, and the positive
sense ("NeedStub") was more demanding than is accurate (since a nearby-enough
function can be called directly even if the platform often requires a stub).
Since the negative sense causes double-negatives, I switched to
"MayNeedFarStub" globally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86363 91177308-0d34-0410-b5e6-96231b3b80d8