This happens a lot in clang-compiled C++ code because it adds overflow checks to operator new[]:
unsigned *foo(unsigned n) { return new unsigned[n]; }
We can optimize away the overflow check on 64 bit targets because (uint64_t)n*4 cannot overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127418 91177308-0d34-0410-b5e6-96231b3b80d8
the value splatted into every element. Extend this to getTrue and getFalse which
by providing new overloads that take Types that are either i1 or <N x i1>. Use
it in InstCombine to add vector support to some code, fixing PR8469!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127116 91177308-0d34-0410-b5e6-96231b3b80d8
possible. This goes into instcombine and instsimplify because instsimplify
doesn't need to check hasOneUse since it returns (almost exclusively) constants.
This fixes PR9343 #4#5 and #8!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127064 91177308-0d34-0410-b5e6-96231b3b80d8
intersection of the LHS and RHS ConstantRanges and return "false" when
the range is empty.
This simplifies some code and catches some extra cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126744 91177308-0d34-0410-b5e6-96231b3b80d8
function prototype into a call to a varargs prototype. We do
allow the xform if we have a definition, but otherwise we don't
want to risk that we're changing the abi in a subtle way. On
X86-64, for example, varargs require passing stuff in %al.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126363 91177308-0d34-0410-b5e6-96231b3b80d8
We usually catch this kind of optimization through InstSimplify's distributive
magic, but or doesn't distribute over xor in general.
"A | ~(A | B) -> A | ~B" hits 24 times on gcc.c.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126081 91177308-0d34-0410-b5e6-96231b3b80d8
variations (some of these were already present so I unified the code). Spotted by my
auto-simplifier as occurring a lot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125734 91177308-0d34-0410-b5e6-96231b3b80d8
It caused a crash in MultiSource/Benchmarks/Bullet.
Opt hit an assertion with "opt -std-compile-opts" because
Constant::getAllOnesValue doesn't know how to handle floats.
This patch added a test to reproduce the problem and a check that the
destination vector is of integer type.
Thank you Benjamin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125459 91177308-0d34-0410-b5e6-96231b3b80d8
gep to explicit addressing, we know that none of the intermediate
computation overflows.
This could use review: it seems that the shifts certainly wouldn't
overflow, but could the intermediate adds overflow if there is a
negative index?
Previously the testcase would instcombine to:
define i1 @test(i64 %i) {
%p1.idx.mask = and i64 %i, 4611686018427387903
%cmp = icmp eq i64 %p1.idx.mask, 1000
ret i1 %cmp
}
now we get:
define i1 @test(i64 %i) {
%cmp = icmp eq i64 %i, 1000
ret i1 %cmp
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125271 91177308-0d34-0410-b5e6-96231b3b80d8
exact/nsw/nuw shifts and have instcombine infer them when it can prove
that the relevant properties are true for a given shift without them.
Also, a variety of refactoring to use the new patternmatch logic thrown
in for good luck. I believe that this takes care of a bunch of related
code quality issues attached to PR8862.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125267 91177308-0d34-0410-b5e6-96231b3b80d8
optimizations to be much more aggressive in the face of
exact/nsw/nuw div and shifts. For example, these (which
are the same except the first is 'exact' sdiv:
define i1 @sdiv_icmp4_exact(i64 %X) nounwind {
%A = sdiv exact i64 %X, -5 ; X/-5 == 0 --> x == 0
%B = icmp eq i64 %A, 0
ret i1 %B
}
define i1 @sdiv_icmp4(i64 %X) nounwind {
%A = sdiv i64 %X, -5 ; X/-5 == 0 --> x == 0
%B = icmp eq i64 %A, 0
ret i1 %B
}
compile down to:
define i1 @sdiv_icmp4_exact(i64 %X) nounwind {
%1 = icmp eq i64 %X, 0
ret i1 %1
}
define i1 @sdiv_icmp4(i64 %X) nounwind {
%X.off = add i64 %X, 4
%1 = icmp ult i64 %X.off, 9
ret i1 %1
}
This happens when you do something like:
(ptr1-ptr2) == 42
where the pointers are pointers to non-unit types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125266 91177308-0d34-0410-b5e6-96231b3b80d8
benchmarks, and that it can be simplified to X/Y. (In general you can only
simplify (Z*Y)/Y to Z if the multiplication did not overflow; if Z has the
form "X/Y" then this is the case). This patch implements that transform and
moves some Div logic out of instcombine and into InstructionSimplify.
Unfortunately instcombine gets in the way somewhat, since it likes to change
(X/Y)*Y into X-(X rem Y), so I had to teach instcombine about this too.
Finally, thanks to the NSW/NUW flags, sometimes we know directly that "Z*Y"
does not overflow, because the flag says so, so I added that logic too. This
eliminates a bunch of divisions and subtractions in 447.dealII, and has good
effects on some other benchmarks too. It seems to have quite an effect on
tramp3d-v4 but it's hard to say if it's good or bad because inlining decisions
changed, resulting in massive changes all over.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124487 91177308-0d34-0410-b5e6-96231b3b80d8
A == B, and A > B, does not mean we can fold it to true. We still need to
check for A ? B (A unordered B).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123993 91177308-0d34-0410-b5e6-96231b3b80d8
a select. A vector select is pairwise on each element so we'd need a new
condition with the right number of elements to select on. Fixes PR8994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123963 91177308-0d34-0410-b5e6-96231b3b80d8
multiple uses. In some cases, all the uses are the same operation,
so instcombine can go ahead and promote the phi. In the testcase
this pushes an add out of the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123568 91177308-0d34-0410-b5e6-96231b3b80d8