This change emits a COPY for a shift-immediate with a "zero" shift value.
This fixes PR21594 where we emitted a shift instruction with an incorrect
immediate operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222247 91177308-0d34-0410-b5e6-96231b3b80d8
EarlyCSE is giving up on the current instruction immediately when it recognizes that the current instruction makes a previous store trivially dead. There's no reason to do this. Once the previous store has been deleted, it's perfectly legal to remember the value of the current store (for value forwarding) and the fact the store occurred (it could be dead too!).
Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D6301
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222241 91177308-0d34-0410-b5e6-96231b3b80d8
It is impossible for (x & INT_MAX) == 0 && x == INT_MAX to ever be true.
While this sort of reasoning should normally live in InstSimplify,
the machinery that derives this result is not trivial to split out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222230 91177308-0d34-0410-b5e6-96231b3b80d8
- Make CallGraphSCCPass's paragraph about doFinalization refer to
runOnSCC instead of runOnFunction, since that's what it's about.
- Fix a reference in the FunctionPass paragraph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222222 91177308-0d34-0410-b5e6-96231b3b80d8
Usually global variables are in a retain list and instanciated before
any call to constructImportedEntityDIE is made. This isn't true for
forward declarations though.
The testcase for this change is generated by a clang patched to emit
such forward declarations (patch at http://reviews.llvm.org/D6173
which will land soon). The updated testcase tests more than just
global variables, it now tests every type of 'using' clause we
support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222217 91177308-0d34-0410-b5e6-96231b3b80d8
We claimed that we were printing the Subystem field when we were
actually printing the Characteristics field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222216 91177308-0d34-0410-b5e6-96231b3b80d8
I added a pessimization in r217102 to prevent miscompiles when the
incremented induction variable was used in a comparison; it would be
poison.
Try to use the incremented induction variable more often when we can be
sure that the increment won't end in poison.
Differential Revision: http://reviews.llvm.org/D6222
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222213 91177308-0d34-0410-b5e6-96231b3b80d8
Having the operands at the back prevents subclasses from safely adding
fields. Move them to the front.
Instead of replicating the custom `malloc()`, `free()` and `DestroyFlag`
logic that was there before, overload `new` and `delete`.
I added calls to a new `GenericMDNode::dropAllReferences()` in
`LLVMContextImpl::~LLVMContextImpl()`. There's a maze of callbacks
happening during teardown, and this resolves them before we enter
the destructors.
Part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222211 91177308-0d34-0410-b5e6-96231b3b80d8
Split `MDNode` into two classes:
- `GenericMDNode`, which is uniquable (and for now, always starts
uniqued). Once `Metadata` is split from the `Value` hierarchy, this
class will lose the ability to RAUW itself.
- `MDNodeFwdDecl`, which is used for the "temporary" interface, is
never uniqued, and isn't managed by `LLVMContext` at all.
I've left most of the guts in `MDNode` for now, but I'll incrementally
move things to the right places (or delete the functionality, as
appropriate).
Part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222205 91177308-0d34-0410-b5e6-96231b3b80d8
use DIScopeRef.
A paired commit at clang will follow to show cases where we will use an
identifer for the context of a global variable.
rdar://18958417
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222195 91177308-0d34-0410-b5e6-96231b3b80d8
Change uniquing from a `FoldingSet` to a `DenseSet` with custom
`DenseMapInfo`. Unfortunately, this doesn't save any memory, since
`DenseSet<T>` is a simple wrapper for `DenseMap<T, char>`, but I'll come
back to fix that later.
I used the name `GenericDenseMapInfo` to the custom `DenseMapInfo` since
I'll be splitting `MDNode` into two classes soon: `MDNodeFwdDecl` for
temporaries, and `GenericMDNode` for everything else.
I also added a non-debug-info reduced version of a type-uniquing test
that started failing on an earlier draft of this patch.
Part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222191 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222183.
Broke on the MSVC buildbots due to MSVC not producing default move
operations - I'd fix it immediately but just broke my build system a
bit, so backing out until I have a chance to get everything going again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222187 91177308-0d34-0410-b5e6-96231b3b80d8
The next step is to actually use unique_ptr in TreePatternNode's
Children vector. That will be more intrusive, and may not work,
depending on exactly how these things are handled (I have a bad
suspicion things are shared more than they should be, making this more
DAG than tree - but if it's really a tree, unique_ptr should suffice)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222183 91177308-0d34-0410-b5e6-96231b3b80d8
This was resulting in use of a register after a kill.
For some reason this showed up as a problem in many tests
when moving the SIFixSGPRCopies pass closer to instruction
selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222175 91177308-0d34-0410-b5e6-96231b3b80d8
When converting a switch to a lookup table we might have to generate a bitmaks
to encode and check for holes in the original switch statement.
The type of this mask depends on the number of switch statements, which can
result in illegal types for pretty much all architectures.
To avoid unnecessary type legalization and help FastISel this commit increases
the size of the bitmask to next power-of-2 value when necessary.
This fixes rdar://problem/18984639.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222168 91177308-0d34-0410-b5e6-96231b3b80d8
They were producing the wrong result if NumBits == BitsInWord. The old mask
produced -1, the new mask 0.
This should fix the 32 bit bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222166 91177308-0d34-0410-b5e6-96231b3b80d8
The specializations were broken. For example,
void foo(const CallGraph *G) {
auto I = GraphTraits<const CallGraph *>::nodes_begin(G);
auto K = I++;
...
}
or
void bar(const CallGraphNode *N) {
auto I = GraphTraits<const CallGraphNode *>::nodes_begin(G);
auto K = I++;
....
}
would not compile.
Patch by Speziale Ettore!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222149 91177308-0d34-0410-b5e6-96231b3b80d8
The triple parser should only accept existing architecture names
when the triple starts with armv, armebv, thumbv or thumbebv.
Patch by Gabor Ballabas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222129 91177308-0d34-0410-b5e6-96231b3b80d8
SCEVDivision::divide constructed an object of SCEVDivision<Derived>
instead of Derived. divide would call visit which would cast the
SCEVDivision<Derived> to type Derived. As it happens,
SCEVDivision<Derived> and Derived currently have the same layout but
this is fragile and grounds for UB.
Instead, just construct Derived. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222126 91177308-0d34-0410-b5e6-96231b3b80d8
This was motivated by a bug which caused code like this to be
miscompiled:
declare void @take_ptr(i8*)
define void @test() {
%addr1.32 = alloca i8
%addr2.32 = alloca i32, i32 1028
call void @take_ptr(i8* %addr1)
ret void
}
This was emitting the following assembly to get the value of %addr1:
add r0, sp, #1020
add r0, r0, #8
However, "add r0, r0, #8" is not a valid Thumb1 instruction, and this
could not be assembled. The generated object file contained this,
resulting in r0 holding SP+8 rather tha SP+1028:
add r0, sp, #1020
add r0, sp, #8
This function looked like it could have caused miscompilations for
other combinations of registers and offsets (though I don't think it is
currently called with these), and the heuristic it used did not match
the emitted code in all cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222125 91177308-0d34-0410-b5e6-96231b3b80d8
We were a little lax in a few areas:
- We pretended that import libraries were like any old COFF file, they
are not. In fact, they aren't really COFF files at all, we should
probably grow some specialized functionality to handle them smarter.
- Our symbol iterators were more than happy to attempt to go past the
end of the symbol table if you had a symbol with a bad list of
auxiliary symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222124 91177308-0d34-0410-b5e6-96231b3b80d8
Some optimisations in DAGCombiner cause miscompilations for targets that use
TargetLowering::UndefinedBooleanContent, because they assume that the results
of a SELECT_CC node are boolean values, and can be safely ANDed, ORed and
XORed. These optimisations are only valid for targets that use
ZeroOrOneBooleanContent or ZeroOrNegativeOneBooleanContent.
This is a follow-up to D6210/r221693.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222123 91177308-0d34-0410-b5e6-96231b3b80d8
warning: suggest parentheses around assignment used as truth value [-Wparentheses]
if (ec = widenPath(path, path_utf16))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222122 91177308-0d34-0410-b5e6-96231b3b80d8
This is a simple optimization for switch table lookup:
It computes the output value directly with an (optional) mul and add if there is a linear mapping between index and output.
Example:
int f1(int x) {
switch (x) {
case 0: return 10;
case 1: return 11;
case 2: return 12;
case 3: return 13;
}
return 0;
}
generates:
define i32 @f1(i32 %x) #0 {
entry:
%0 = icmp ult i32 %x, 4
br i1 %0, label %switch.lookup, label %return
switch.lookup:
%switch.offset = add i32 %x, 10
ret i32 %switch.offset
return:
ret i32 0
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222121 91177308-0d34-0410-b5e6-96231b3b80d8
Indices into the table are stored in each MCRegisterClass instead of a pointer. A new method, getRegClassName, is added to MCRegisterInfo and TargetRegisterInfo to lookup the string in the table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222118 91177308-0d34-0410-b5e6-96231b3b80d8