are visible to analysis as intrinsics. That is, make sure someone doesn't pass
free around by address in some struct (as happens in say 176.gcc).
This doesn't get rid of any indirect calls, just ensure calls to free and malloc
are always direct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27560 91177308-0d34-0410-b5e6-96231b3b80d8
1. Do not statically construct a map when the program starts up, this
is expensive and cannot be optimized. Instead, create a list.
2. Do not insert entries for all function in the module into a hashmap
that lives the full life of the compiler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25512 91177308-0d34-0410-b5e6-96231b3b80d8
1. Use the varargs version of getOrInsertFunction to simplify code.
2. remove #include
3. Reduce the number of #ifdef's.
4. remove extraneous vertical whitespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25508 91177308-0d34-0410-b5e6-96231b3b80d8
Don't do floor->floorf conversion if floorf is not available. This checks
the compiler's host, not its target, which is incorrect for cross-compilers
Not sure that's important as we don't build many cross-compilers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25456 91177308-0d34-0410-b5e6-96231b3b80d8
a) use better local variable names (OldMT -> OldFT) where "M" is used to
mean "Function" (perhaps it was previously "Method"?)
b) print out the module identifier in a warning message so that it is
possible to track down in which module the error occurred.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24698 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for specifying alignment and size of setjmp jmpbufs.
No targets currently do anything with this information, nor is it presrved
in the bytecode representation. That's coming up next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24196 91177308-0d34-0410-b5e6-96231b3b80d8
pointer marking the end of the list, the zero *must* be cast to the pointer
type. An un-cast zero is a 32-bit int, and at least on x86_64, gcc will
not extend the zero to 64 bits, thus allowing the upper 32 bits to be
random junk.
The new END_WITH_NULL macro may be used to annotate a such a function
so that GCC (version 4 or newer) will detect the use of un-casted zero
at compile time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23888 91177308-0d34-0410-b5e6-96231b3b80d8
all but main. If it's not set, we can still internalize, but only if an
explicit symbol list is provided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23783 91177308-0d34-0410-b5e6-96231b3b80d8
Implement the start of global ctor optimization. It is currently smart
enough to remove the global ctor for cases like this:
struct foo {
foo() {}
} x;
... saving a bit of startup time for the program.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23433 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyLibCalls probably has to be audited to make sure it does not make
this mistake elsewhere. Also, if this code knows that the type will be
unsigned, obviously one arm of this is dead.
Reid, can you take a look into this further?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22566 91177308-0d34-0410-b5e6-96231b3b80d8
is a mismatch in their character type pointers (i.e. fprintf() prints an
array of ubytes while fwrite() takes an array of sbytes).
We can probably do better than this (such as casting the ubyte to an
sbyte).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22310 91177308-0d34-0410-b5e6-96231b3b80d8
* Check for availability of ffsll call in configure script
* Support ffs, ffsl, and ffsll conversion to constant value if the argument
is constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22027 91177308-0d34-0410-b5e6-96231b3b80d8
strlen(x) != 0 -> *x != 0
strlen(x) == 0 -> *x == 0
* Change nested statistics to use style of other LLVM statistics so that
only the name of the optimization (simplify-libcalls) is used as the
statistic name, and the description indicates which specific all is
optimized. Cuts down on some redundancy and saves a few bytes of space.
* Make note of stpcpy optimization that could be done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21766 91177308-0d34-0410-b5e6-96231b3b80d8
library function:
isdigit(chr) -> 0 or 1 if chr is constant
isdigit(chr) -> chr - '0' <= 9 otherwise
Although there are many calls to isdigit in llvm-test, most of them are
compiled away by macros leaving only this:
2 MultiSource/Applications/hexxagon
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21688 91177308-0d34-0410-b5e6-96231b3b80d8
actual spec (int -> uint)
* Add the ability to get/cache the strlen function prototype.
* Make sure generated values are appropriately named for debugging purposes
* Add the SPrintFOptimiation for 4 casts of sprintf optimization:
sprintf(str,cstr) -> llvm.memcpy(str,cstr) (if cstr has no %)
sprintf(str,"") -> store sbyte 0, str
sprintf(str,"%s",src) -> llvm.memcpy(str,src) (if src is constant)
sprintf(str,"%c",chr) -> store chr, str ; store sbyte 0, str+1
The sprintf optimization didn't fire as much as I had hoped:
2 MultiSource/Applications/SPASS
5 MultiSource/Benchmarks/McCat/18-imp
22 MultiSource/Benchmarks/Prolangs-C/TimberWolfMC
1 MultiSource/Benchmarks/Prolangs-C/assembler
6 MultiSource/Benchmarks/Prolangs-C/unix-smail
2 MultiSource/Benchmarks/mediabench/mpeg2/mpeg2dec
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21679 91177308-0d34-0410-b5e6-96231b3b80d8
Neither of these activated as many times as was hoped:
strchr:
9 MultiSource/Applications/siod
1 MultiSource/Applications/d
2 MultiSource/Prolangs-C/archie-client
1 External/SPEC/CINT2000/176.gcc/176.gcc
llvm.memset:
no hits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21669 91177308-0d34-0410-b5e6-96231b3b80d8
strings passed to Statistic's constructor are not destructable. The stats
are printed during static destruction and the SimplifyLibCalls module was
getting destructed before the statistics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21661 91177308-0d34-0410-b5e6-96231b3b80d8
type be obtained from a CallInst we're optimizing.
* Make it possible for getConstantStringLength to return the ConstantArray
that it extracts in case the content is needed by an Optimization.
* Implement the strcmp optimization
* Implement the toascii optimization
This pass is now firing several to many times in the following MultiSource
tests:
Applications/Burg - 7 (strcat,strcpy)
Applications/siod - 13 (strcat,strcpy,strlen)
Applications/spiff - 120 (exit,fputs,strcat,strcpy,strlen)
Applications/treecc - 66 (exit,fputs,strcat,strcpy)
Applications/kimwitu++ - 34 (strcmp,strcpy,strlen)
Applications/SPASS - 588 (exit,fputs,strcat,strcpy,strlen)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21626 91177308-0d34-0410-b5e6-96231b3b80d8
* Name the instructions by appending to name of original
* Factor common part out of a switch statement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21597 91177308-0d34-0410-b5e6-96231b3b80d8
* Correct stale documentation in a few places
* Re-order the file to better associate things and reduce line count
* Make the pass thread safe by caching the Function* objects needed by the
optimizers in the pass object instead of globally.
* Provide the SimplifyLibCalls pass object to the optimizer classes so they
can access cached Function* objects and TargetData info
* Make sure the pass resets its cache if the Module passed to runOnModule
changes
* Rename CallOptimizer LibCallOptimization. All the classes are named
*Optimization while the objects are *Optimizer.
* Don't cache Function* in the optimizer objects because they could be used
by multiple PassManager's running in multiple threads
* Add an optimization for strcpy which is similar to strcat
* Add a "TODO" list at the end of the file for ideas on additional libcall
optimizations that could be added (get ideas from other compilers).
Sorry for the huge diff. Its mostly reorganization of code. That won't
happen again as I believe the design and infrastructure for this pass is
now done or close to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21589 91177308-0d34-0410-b5e6-96231b3b80d8
call to them into an 'unreachable' instruction.
This triggers a bunch of times, particularly on gcc:
gzip: 36
gcc: 601
eon: 12
bzip: 38
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21587 91177308-0d34-0410-b5e6-96231b3b80d8
* MemCpyOptimization can only be optimized if the 3rd and 4th arguments are
constants and we weren't checking for that.
* The result of llvm.memcpy (and llvm.memmove) is void* not sbyte*, put in
a cast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21570 91177308-0d34-0410-b5e6-96231b3b80d8
* Have the SimplifyLibCalls pass acquire the TargetData and pass it down to
the optimization classes so they can use it to make better choices for
the signatures of functions, etc.
* Rearrange the code a little so the utility functions are closer to their
usage and keep the core of the pass near the top of the files.
* Adjust the StrLen pass to get/use the correct prototype depending on the
TargetData::getIntPtrType() result. The result of strlen is size_t which
could be either uint or ulong depending on the platform.
* Clean up some coding nits (cast vs. dyn_cast, remove redundant items from
a switch, etc.)
* Implement the MemMoveOptimization as a twin of MemCpyOptimization (they
only differ in name).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21569 91177308-0d34-0410-b5e6-96231b3b80d8
named getConstantStringLength. This is the common part of StrCpy and
StrLen optimizations and probably several others, yet to be written. It
performs all the validity checks for looking at constant arrays that are
supposed to be null-terminated strings and then computes the actual
length of the string.
* Implement the MemCpyOptimization class. This just turns memcpy of 1, 2, 4
and 8 byte data blocks that are properly aligned on those boundaries into
a load and a store. Much more could be done here but alignment
restrictions and lack of knowledge of the target instruction set prevent
use from doing significantly more. That will have to be delegated to the
code generators as they lower llvm.memcpy calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21562 91177308-0d34-0410-b5e6-96231b3b80d8
* Factor out commonalities between StrLenOptimization and StrCatOptimization
* Make sure that signatures return sbyte* not void*
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21559 91177308-0d34-0410-b5e6-96231b3b80d8
* Change signatures of OptimizeCall and ValidateCalledFunction so they are
non-const, allowing the optimization object to be modified. This is in
support of caching things used across multiple calls.
* Provide two functions for constructing and caching function types
* Modify the StrCatOptimization to cache Function objects for strlen and
llvm.memcpy so it doesn't regenerate them on each call site. Make sure
these are invalidated each time we start the pass.
* Handle both a GEP Instruction and a GEP ConstantExpr
* Add additional checks to make sure we really are dealing with an arary of
sbyte and that all the element initializers are ConstantInt or
ConstantExpr that reduce to ConstantInt.
* Make sure the GlobalVariable is constant!
* Don't use ConstantArray::getString as it can fail and it doesn't give us
the right thing. We must check for null bytes in the middle of the array.
* Use llvm.memcpy instead of memcpy so we can factor alignment into it.
* Don't use void* types in signatures, replace with sbyte* instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21555 91177308-0d34-0410-b5e6-96231b3b80d8
* Don't use std::string for the function names, const char* will suffice
* Allow each CallOptimizer to validate the function signature before
doing anything
* Repeatedly loop over the functions until an iteration produces
no more optimizations. This allows one optimization to insert a
call that is optimized by another optimization.
* Implement the ConstantArray portion of the StrCatOptimization
* Provide a template for the MemCpyOptimization
* Make ExitInMainOptimization split the block, not delete everything
after the return instruction.
(This covers revision 1.3 and 1.4, as the 1.3 comments were botched)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21548 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix comments at top of file
* Change algorithm for running the call optimizations from n*n to something
closer to n.
* Use a hash_map to store and lookup the optimizations since there will
eventually (or potentially) be a large number of them. This gets lookup
based on the name of the function to O(1). Each CallOptimizer now has a
std::string member named func_name that tracks the name of the function
that it applies to. It is this string that is entered into the hash_map
for fast comparison against the function names encountered in the module.
* Cleanup some style issues pertaining to iterator invalidation
* Don't pass the Function pointer to the OptimizeCall function because if
the optimization needs it, it can get it from the CallInst passed in.
* Add the skeleton for a new CallOptimizer, StrCatOptimizer which will
eventually replace strcat's of constant strings with direct copies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21526 91177308-0d34-0410-b5e6-96231b3b80d8
calls. The pass visits all external functions in the module and determines
if such function calls can be optimized. The optimizations are specific to
the library calls involved. This initial version only optimizes calls to
exit(3) when they occur in main(): it changes them to ret instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21522 91177308-0d34-0410-b5e6-96231b3b80d8
using Function::arg_{iterator|begin|end}. Likewise Module::g* -> Module::global_*.
This patch is contributed by Gabor Greif, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20597 91177308-0d34-0410-b5e6-96231b3b80d8
global with an alloca, which eventually gets promoted into a
register. This enables a lot of other optimizations later on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20109 91177308-0d34-0410-b5e6-96231b3b80d8
in SPEC, the subsequent optimziations that we are after don't play with
with FP values, so disable this xform for them. Really we just don't want
stuff like:
double G; (always 0 or 412312.312)
= G;
turning into:
bool G_b;
= G_b ? 412312.312 : 0;
We'd rather just do the load.
-Chris
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18819 91177308-0d34-0410-b5e6-96231b3b80d8
down to actually BE a bool. This allows simple value range propagation
stuff work harder, deleting comparisons in bzip2 in some hot loops.
This implements GlobalOpt/integer-bool.ll, which is the essence of the
loop condition distilled into a testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18817 91177308-0d34-0410-b5e6-96231b3b80d8
in scary and unknown ways before we promote it. This fixes the miscompilation
of 188.ammp that has been plauging us since a globalopt patch went in.
Thanks a ton to Tanya for helping me diagnose the problem!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18418 91177308-0d34-0410-b5e6-96231b3b80d8
value. This allows us to turn more globals into constants and eliminate them.
This patch implements GlobalOpt/load-store-global.llx.
Note that this patch speeds up 255.vortex from:
Output/255.vortex.out-cbe.time:program 7.640000
Output/255.vortex.out-llc.time:program 9.810000
to:
Output/255.vortex.out-cbe.time:program 7.250000
Output/255.vortex.out-llc.time:program 9.490000
Which isn't bad at all!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17746 91177308-0d34-0410-b5e6-96231b3b80d8
constant value. This makes the return value dead and allows for
simplification in the caller.
This implements IPConstantProp/return-constant.ll
This triggers several dozen times throughout SPEC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17730 91177308-0d34-0410-b5e6-96231b3b80d8
argument pointers. This is only valid to do if the function already
unconditionally loaded an argument or if the pointer passed in is known
to be valid. Make sure to do the required checks.
This fixed ArgumentPromotion/control-flow.ll and the Burg program.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17718 91177308-0d34-0410-b5e6-96231b3b80d8
This allows to elimination of a bunch of global pool descriptor args from
programs being pool allocated (and is also generally useful!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17657 91177308-0d34-0410-b5e6-96231b3b80d8
First, it allows SRA of globals that have embedded arrays, implementing
GlobalOpt/globalsra-partial.llx. This comes up infrequently, but does allow,
for example, deleting several stores to dead parts of globals in dhrystone.
Second, this implements GlobalOpt/malloc-promote-*.llx, which is the
following nifty transformation:
Basically if a global pointer is initialized with malloc, and we can tell
that the program won't notice, we transform this:
struct foo *FooPtr;
...
FooPtr = malloc(sizeof(struct foo));
...
FooPtr->A FooPtr->B
Into:
struct foo FooPtrBody;
...
FooPtrBody.A FooPtrBody.B
This comes up occasionally, for example, the 'disp' global in 183.equake (where
the xform speeds the CBE version of the program up from 56.16s to 52.40s (7%)
on apoc), and the 'desired_accept', 'fixLRBT', 'macroArray', & 'key_queue'
globals in 300.twolf (speeding it up from 22.29s to 21.55s (3.4%)).
The nice thing about this xform is that it exposes the resulting global to
global variable optimization and makes alias analysis easier in addition to
eliminating a few loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16916 91177308-0d34-0410-b5e6-96231b3b80d8
still optimize away all of the indirect calls and loads, etc from it.
This turns code like this:
if (G != 0)
G();
into
if (G != 0)
ActualCallee();
This triggers a couple of times in gcc and libstdc++.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16901 91177308-0d34-0410-b5e6-96231b3b80d8
stored to, but are stored at variable indexes. This occurs at least in
176.gcc, but probably others, and we should handle it for completeness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16876 91177308-0d34-0410-b5e6-96231b3b80d8
has a large number of users. Instead, just keep track of whether we're
making changes as we do so.
This patch has no functionlity changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16874 91177308-0d34-0410-b5e6-96231b3b80d8
we know that all uses of the global will trap if the pointer contained is
null. In this case, we forward substitute the stored value to any uses.
This has the effect of devirtualizing trivial globals in trivial cases. For
example, 164.gzip contains this:
gzip.h:extern int (*read_buf) OF((char *buf, unsigned size));
bits.c: read_buf = file_read;
deflate.c: lookahead = read_buf((char*)window,
deflate.c: n = read_buf((char*)window+strstart+lookahead, more);
Since read_buf has to point to file_read at every use, we just replace
the calls through read_buf with a direct call to file_read.
This occurs in several benchmarks, including 176.gcc and 164.gzip. Direct
calls are good and stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16871 91177308-0d34-0410-b5e6-96231b3b80d8
* Do not lead dangling dead constants prevent optimization
* Iterate global optimization while we're making progress.
These changes allow us to be more aggressive, handling cases like
GlobalOpt/iterate.llx without a problem (turning it into 'ret int 0').
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16857 91177308-0d34-0410-b5e6-96231b3b80d8
optimizations to trigger much more often. This allows the elimination of
several dozen more global variables in Programs/External. Note that we only
do this for non-constant globals: constant globals will already be optimized
out if the accesses to them permit it.
This implements Transforms/GlobalOpt/globalsra.llx
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16842 91177308-0d34-0410-b5e6-96231b3b80d8
* Instead of handling dead functions specially, just nuke them.
* Be more aggressive about cleaning up after constification, in
particular, handle getelementptr instructions and constantexprs.
* Be a little bit more structured about how we process globals.
*** Delete globals that are only stored to, and never read. These are
clearly not useful, so they should go. This implements deadglobal.llx
This last one triggers quite a few times. In particular, 2208 in the
external tests, 1865 of which are in 252.eon. This shrinks eon from
1995094 to 1732341 bytes of bytecode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16802 91177308-0d34-0410-b5e6-96231b3b80d8
simplifications of the resultant program to avoid making later passes
do it all.
This allows us to constify globals that just have the same constant that
they are initialized stored into them.
Suprisingly this comes up ALL of the freaking time, dozens of times in
SPEC, 30 times in vortex alone.
For example, on 256.bzip2, it allows us to constify these two globals:
%smallMode = internal global ubyte 0 ; <ubyte*> [#uses=8]
%verbosity = internal global int 0 ; <int*> [#uses=49]
Which (with later optimizations) results in the bytecode file shrinking
from 82286 to 69686 bytes! Lets hear it for IPO :)
For the record, it's nuking lots of "if (verbosity > 2) { do lots of stuff }"
code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16793 91177308-0d34-0410-b5e6-96231b3b80d8
a function being deleted. Due to optimizations done while inlining, there
can be edges from the external call node to a function node that were not
apparent any longer.
This fixes the compiler crash while compiling 175.vpr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16399 91177308-0d34-0410-b5e6-96231b3b80d8
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16137 91177308-0d34-0410-b5e6-96231b3b80d8
instructions in the body of the function (not the entry block). This fixes
test/Programs/SingleSource/Regression/C/2004-08-12-InlinerAndAllocas.c
and test/Programs/External/SPEC/CINT2000/176.gcc on zion.
This should obviously be pulled into 1.3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15684 91177308-0d34-0410-b5e6-96231b3b80d8
dangling constant users were removed from a function, causing it to be dead,
we never removed the call graph edge from the external node to the function.
In most cases, this didn't cause a problem (by luck). This should definitely
go into 1.3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15570 91177308-0d34-0410-b5e6-96231b3b80d8
night compiling cfrac. It did not realize that code like this:
int G; int *H = &G;
takes the address of G.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14973 91177308-0d34-0410-b5e6-96231b3b80d8
- Replace ConstantPointerRef usage with GlobalValue usage
- Rename methods to get ride of ConstantPointerRef usage
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14945 91177308-0d34-0410-b5e6-96231b3b80d8