793 Commits

Author SHA1 Message Date
Alp Toker
087ab613f4 Correct word hyphenations
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
2013-12-05 05:44:44 +00:00
Bill Schmidt
daf6b948b9 [PowerPC] Fix PR17354: Generate nop after local calls for PIC code.
When generating code for shared libraries, even local calls may be
intercepted, so we need a nop after the call for the linker to fix up the
TOC.  Test case adapted from the one provided in PR17354.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191440 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-26 17:09:28 +00:00
Bill Schmidt
3789209b79 [PowerPC] Add a FIXME.
Documenting a design choice to generate only medium model sequences for TLS
addresses at this time.  Small and large code models could be supported if
necessary.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190883 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-17 20:22:05 +00:00
Hal Finkel
fabfb5d588 PPC: Don't restrict lvsl generation to after type legalization
This is a re-commit of r190764, with an extra check to make sure that we're not
performing the transformation on illegal types (a small test case has been
added for this as well).

Original commit message:

The PPC backend uses a target-specific DAG combine to turn unaligned Altivec
loads into a permutation-based sequence when possible. Unfortunately, the
target-specific DAG combine is not always called on all loads of interest
(sometimes the routines in DAGCombine call CombineTo such that the new node and
users are not added to the worklist); allowing the combine to trigger early
(before type legalization) mitigates this problem. Because the autovectorizers
only create legal vector types, I don't expect a lot of cases where this
optimization is enabled by type legalization in practice.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190771 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-15 22:09:58 +00:00
Hal Finkel
19b59e66af Revert r190764: PPC: Don't restrict lvsl generation to after type legalization
This is causing test-suite failures.

Original commit message:

The PPC backend uses a target-specific DAG combine to turn unaligned Altivec
loads into a permutation-based sequence when possible. Unfortunately, the
target-specific DAG combine is not always called on all loads of interest
(sometimes the routines in DAGCombine call CombineTo such that the new node and
users are not added to the worklist); allowing the combine to trigger early
(before type legalization) mitigates this problem. Because the autovectorizers
only create legal vector types, I don't expect a lot of cases where this
optimization is enabled by type legalization in practice.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190765 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-15 15:41:11 +00:00
Hal Finkel
55532adc68 PPC: Don't restrict lvsl generation to after type legalization
The PPC backend uses a target-specific DAG combine to turn unaligned Altivec
loads into a permutation-based sequence when possible. Unfortunately, the
target-specific DAG combine is not always called on all loads of interest
(sometimes the routines in DAGCombine call CombineTo such that the new node and
users are not added to the worklist); allowing the combine to trigger early
(before type legalization) mitigates this problem. Because the autovectorizers
only create legal vector types, I don't expect a lot of cases where this
optimization is enabled by type legalization in practice.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190764 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-15 15:20:54 +00:00
Hal Finkel
98bae99266 Add missing break statement in PPCISelLowering
As it turns out, not a problem in practice, but it should be there.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190720 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-13 20:09:02 +00:00
Chandler Carruth
a2c982129e Remove an unused variable, fixing -Werror build with latest Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190640 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-12 23:30:48 +00:00
Hal Finkel
6671cd4db0 Fix PPC ABI for ByVal structs with vector members
When a structure is passed by value, and that structure contains a vector
member, according to the PPC ABI, the structure will receive enhanced alignment
(so that the vector within the structure will always be aligned).

This should resolve PR16641.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190636 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-12 23:20:06 +00:00
Hal Finkel
4a1535c038 Make the PPC fast-math sqrt expansion safe at 0
In fast-math mode sqrt(x) is calculated using the fast expansion of the
reciprocal of the reciprocal sqrt expansion. The reciprocal and reciprocal
sqrt expansions use the associated estimate instructions along with some Newton
iterations. Unfortunately, as a result, sqrt(0) was being calculated as NaN,
which is not correct. Now we explicitly return a result of zero if the input is
zero.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190624 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-12 19:04:12 +00:00
Hal Finkel
b7fbc5baad Enable MI scheduling (and CodeGen AA) by default for embedded PPC cores
For embedded PPC cores (especially the A2 core), using the MI scheduler with AA
is far superior to the other scheduling options.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190558 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-11 23:05:25 +00:00
Bill Schmidt
11addd2a2f [PowerPC] Call support for fast-isel.
This patch adds fast-isel support for calls (but not intrinsic calls
or varargs calls).  It also removes a badly-formed assert.  There are
some new tests just for calls, and also for folding loads into
arguments on calls to avoid extra extends.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189701 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-30 22:18:55 +00:00
Bill Schmidt
7248968fa5 [PowerPC] Add loads, stores, and related things to fast-isel.
This is the next big chunk of fast-isel code.  The primary purpose is
to implement selection of loads and stores, but there is a lot of
drag-along to support this.  The common code to analyze addresses for
both loads and stores is substantial.  It's also necessary to add the
materialization code for global values.

Related to load-store processing is the code to fold loads into
integer extends, since otherwise we generate lots of redundant
instructions.  We also need to add some overrides to some FastEmit
routines to ensure we don't assign GPR 0 to a virtual register when
this would change the meaning of an instruction.

I added handling selection of a few binary arithmetic instructions, to
enable committing some test cases I wrote a while back.

Finally, ap couple of miscellaneous changes:
 * I cleaned up some poor style from a previous patch in
   PPCISelLowering.cpp, pointed out by David Blaikie.
 * I enlarged the Addr.Offset field to avoid sign problems with 32-bit
   offsets. 



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189636 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-30 02:29:45 +00:00
Bill Schmidt
7c42ede045 Dummy code to silence warning from 4189266
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189272 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-26 20:11:46 +00:00
Hal Finkel
953a78084b Add the PPC fcpsgn instruction
Modern PPC cores support a floating-point copysign instruction, and we can use
this to lower the FCOPYSIGN node (which is created from calls to the libm
copysign function). A couple of extra patterns are necessary because the
operand types of FCOPYSIGN need not agree.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188653 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-19 05:01:02 +00:00
Craig Topper
5a0910b349 Replace getValueType().getSimpleVT() with getSimpleValueType(). Also remove one weird cast from MVT->EVT just to call getSimpleVT().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188441 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-15 02:33:50 +00:00
Hal Finkel
341c1a50ad Actually fix PPC64 64-bit GPR inline asm constraint matching
This is a follow-up to r187693, correcting that code to request the correct
register class. The previous version, with the wrong register class, was not
really correcting the constraints, but rather was removing them. Coincidentally,
this fixed the failing test case in r187693, but obviously created other
problems.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188407 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-14 20:05:04 +00:00
Hal Finkel
05a4d2642b PPC: Map frin to round() not nearbyint() and rint()
Making use of the recently-added ISD::FROUND, which allows for custom lowering
of round(), the PPC backend will now map frin to round(). Previously, we had
been using frin to lower nearbyint() (and rint() via some custom lowering to
handle the extra fenv flags requirements), but only in fast-math mode because
frin does not tie-to-even. Several users had complained about this behavior,
and this new mapping of frin to round is certainly more appropriate (and does
not require fast-math mode).

In effect, this reverts r178362 (and part of r178337, replacing the nearbyint
mapping with the round mapping).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187960 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-08 04:31:34 +00:00
Hal Finkel
5cad12d12a Fix PPC64 64-bit GPR inline asm constraint matching
Internally, the PowerPC backend names the 32-bit GPRs R[0-9]+, and names the
64-bit parent GPRs X[0-9]+. When matching inline assembly constraints with
explicit register names, on PPC64 when an i64 MVT has been requested, we need
to follow gcc's convention of using r[0-9]+ to refer to the 64-bit (parent)
registers.

At some point, we'll probably want to arrange things so that the generic code
in TargetLowering uses the AsmName fields declared in *RegisterInfo.td in order
to match these inline asm register constraints. If we do that, this change can
be reverted.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187693 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-03 12:25:10 +00:00
Bill Schmidt
646cd7933b [PowerPC] Skeletal FastISel support for 64-bit PowerPC ELF.
This is the first of many upcoming patches for PowerPC fast
instruction selection support.  This patch implements the minimum
necessary for a functional (but extremely limited) FastISel pass.  It
allows the table-generated portions of the selector to be created and
used, but in most cases selection will fall back to the DAG selector.
None of the block terminator instructions are implemented yet, and
most interesting instructions require some special handling.
Therefore there aren't any new test cases with this patch.  There will
be quite a few tests coming with future patches.

This patch adds the make/CMake support for the new code (including
tablegen -gen-fast-isel) and creates the FastISel object for PPC64 ELF
only.  It instantiates the necessary virtual functions
(TargetSelectInstruction, TargetMaterializeConstant,
TargetMaterializeAlloca, tryToFoldLoadIntoMI, and FastLowerArguments),
but of these, only TargetMaterializeConstant contains any useful
implementation.  This is present since the table-generated code
requires the ability to materialize integer constants for some
instructions.

This patch has been tested by building and running the
projects/test-suite code with -O0.  All tests passed with the
exception of a couple of long-running tests that time out using -O0
code generation.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187399 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-30 00:50:39 +00:00
Roman Divacky
6ebf55d811 PPC32 va_list is an actual structure so va_copy needs to copy the whole
structure not just a pointer. This implements that and thus fixes va_copy
on PPC32. Fixes #15286. Both bug and patch by Florian Zeitz!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187158 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-25 21:36:47 +00:00
Hal Finkel
0541722de4 PPC: Add base-pointer support to builtin setjmp/longjmp
First, this changes the base-pointer implementation to remove an unnecessary
complication (and one that is incompatible with how builtin SjLj is
implemented): instead of using r31 as the base pointer when it is not needed as
a frame pointer, now the base pointer will always be r30 when needed.

Second, we introduce another pseudo register, BP, which is used just like the FP
pseudo register to refer to the base register before we know for certain what
register it will be.

Third, we now save BP into the jmp_buf, and restore r30 from that slot in
longjmp.  If the function that called setjmp did not use a base pointer, then
r30 will be overwritten by the setjmp-calling-function's restore code. FP
restoration (which is restored into r31) works the same way.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186545 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-17 23:50:51 +00:00
Craig Topper
a0ec3f9b7b Use SmallVectorImpl& instead of SmallVector to avoid repeating small vector size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186274 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-14 04:42:23 +00:00
Hal Finkel
e355d850d6 PPC: Add a better comment about the i64 FI fixup
In discussing this change with Bill Schmidt, it was decided that the original
comment about negative FIs was incorrect. We'll still exclude them for now, but
now with a more-accurate explanation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186005 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-10 15:29:01 +00:00
Bill Schmidt
7c2d8f7b5e [PowerPC] Better fix for PR16556.
A more complete example of the bug in PR16556 was recently provided,
showing that the previous fix was not sufficient.  The previous fix is
reverted herein.

The real problem is that ReplaceNodeResults() uses LowerFP_TO_INT as
custom lowering for FP_TO_SINT during type legalization, without
checking whether the input type is handled by that routine.
LowerFP_TO_INT requires the input to be f32 or f64, so we fail when
the input is ppcf128.

I'm leaving the test case from the initial fix (r185821) in place, and
adding the new test as another crash-only check.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185959 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-09 18:50:20 +00:00
Stephen Lin
e54885af9b AArch64/PowerPC/SystemZ/X86: This patch fixes the interface, usage, and all
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:

1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.

2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.

3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.

The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185956 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-09 18:16:56 +00:00
Hal Finkel
fa55969acb PPC: Allocate RS spill slot for unaligned i64 load/store
This fixes another bug found by llvm-stress!

If we happen to be doing an i64 load or store into a stack slot that has less
than a 4-byte alignment, then the frame-index elimination may need to use an
indexed load or store instruction (because the offset may not be a multiple of
4, a requirement of the STD/LD instructions). The extra register needed to hold
the offset comes from the register scavenger, and it is possible that the
scavenger will need to use an emergency spill slot. As a result, we need to
make sure that a spill slot is allocated when doing an i64 load/store into a
less-than-4-byte-aligned stack slot.

Because test cases for things like this tend to be fairly fragile, I've
concatenated a few small bugpoint-reduced test cases together to form the
regression test.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185907 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-09 06:34:51 +00:00
Hal Finkel
947d447ee0 PPC: Mark vector CC action for SETO and SETONE as Expand
Another bug found by llvm-stress! This fixes hitting
  llvm_unreachable("Invalid integer vector compare condition");
at the end of getVCmpInst in PPCISelDAGToDAG.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185855 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 20:00:03 +00:00
Hal Finkel
ad3b34d1bc PPC: Mark vector FREM as Expand by default
Another bug found by llvm-stress! This fixes crashing with:
  LLVM ERROR: Cannot select: v4f32 = frem ...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185840 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 17:30:25 +00:00
Bill Schmidt
12ae7fd2da [PowerPC] Fix PR16556 (handle undef ppcf128 in LowerFP_TO_INT).
PPCTargetLowering::LowerFP_TO_INT() expects its source operand to be
either an f32 or f64, but this is not checked.  A long double
(ppcf128) operand will normally be custom-lowered to a conversion to
f64 in this context.  However, this isn't the case for an UNDEF node.

This patch recognizes a ppcf128 as a legal source operand for
FP_TO_INT only if it's an undef, in which case it creates an undef of
the target type.

At some point we might want to do a wholesale custom lowering of
ISD::UNDEF when the type is ppcf128, but it's not really clear that's
a great idea, and probably more work than it's worth for a situation
that only arises in the case of a programming error.  At this point I
think simple is best.

The test case comes from PR16556, and is a crash-test only.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185821 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-08 14:22:45 +00:00
Ulrich Weigand
23a72c8f7e [PowerPC] Support @tls in the asm parser
This adds support for the last missing construct to parse TLS-related
assembler code:
   add 3, 4, symbol@tls

The ADD8TLS currently hard-codes the @tls into the assembler string.
This cannot be handled by the asm parser, since @tls is parsed as
a symbol variant.  This patch changes ADD8TLS to have the @tls suffix
printed as symbol variant on output too, which allows us to remove
the isCodeGenOnly marker from ADD8TLS.  This in turn means that we
can add a AsmOperand to accept @tls marked symbols on input.

As a side effect, this means that the fixup_ppc_tlsreg fixup type
is no longer necessary and can be merged into fixup_ppc_nofixup.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185692 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-05 12:22:36 +00:00
Jakob Stoklund Olesen
f349a6e9e6 Remove the EXCEPTIONADDR, EHSELECTION, and LSDAADDR ISD opcodes.
These exception-related opcodes are not used any longer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185625 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-04 13:54:20 +00:00
Jakob Stoklund Olesen
c93822901a Revert r185595-185596 which broke buildbots.
Revert "Simplify landing pad lowering."
Revert "Remove the EXCEPTIONADDR, EHSELECTION, and LSDAADDR ISD opcodes."

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185600 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-04 00:26:30 +00:00
Jakob Stoklund Olesen
62204220e1 Remove the EXCEPTIONADDR, EHSELECTION, and LSDAADDR ISD opcodes.
These exception-related opcodes are not used any longer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185596 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-03 23:56:31 +00:00
Ulrich Weigand
965b20e39c [PowerPC] Always use mfocrf if available
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.

Current code makes that distinction in many, but not all places
where a single CR register value is retrieved.  One missing
location is PPCRegisterInfo::lowerCRSpilling.

To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.

On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.

This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.

The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.

Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185556 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-03 17:05:42 +00:00
Chad Rosier
5b3fca50a0 The getRegForInlineAsmConstraint function should only accept MVT value types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184642 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-22 18:37:38 +00:00
Ulrich Weigand
92cfa61c50 [PowerPC] Rename some more VK_PPC_ enums
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent.  This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.

For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.

No change in behaviour.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184547 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-21 14:42:20 +00:00
Bill Schmidt
d3f7766f23 [PowerPC] Expose some calling convention functions in PPCISelLowering.h.
This is a preparatory patch for fast-isel support.  The instruction
selector will need to access some functions in PPCGenCallingConv.inc,
which in turn requires several helper functions to be defined.  These
are currently defined near the only use of PCCGenCallingConv.inc,
inside PPCISelLowering.cpp.  This patch moves the declaration of the
functions into the associated header file to provide the needed
visibility.

No functional change intended.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183844 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-12 16:39:22 +00:00
Bill Wendling
80ada583f3 Don't cache the instruction and register info from the TargetMachine, because
the internals of TargetMachine could change.

No functionality change intended.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183494 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-07 07:55:53 +00:00
Andrew Trick
6e0b2a0cb0 Order CALLSEQ_START and CALLSEQ_END nodes.
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.

Patch by Xiaoyi Guo!

This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182885 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-29 22:03:55 +00:00
Hal Finkel
119da2eb20 PPC: Add a isConsecutiveLS utility function
isConsecutiveLS is a slightly more general form of
SelectionDAG::isConsecutiveLoad. Aside from also handling stores, it also does
not assume equality of the chain operands is necessary. In the case of the PPC
backend, this chain condition is checked in a more general way by the
surrounding code.

Mostly, this part of the refactoring in preparation for supporting optimized
unaligned stores.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182723 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-27 02:06:39 +00:00
Hal Finkel
1907cad7c8 Prefer to duplicate PPC Altivec loads when expanding unaligned loads
When expanding unaligned Altivec loads, we use the decremented offset trick to
prevent page faults. Unfortunately, if we have a sequence of consecutive
unaligned loads, this leads to suboptimal code generation because the 'extra'
load from the first unaligned load can be combined with the base load from the
second (but only if the decremented offset trick is not used for the first).
Search up and down the chain, through loads and token factors, looking for
consecutive loads, and if one is found, don't use the offset reduction trick.
These duplicate loads are later combined to yield the desired sequence (in the
future, we might want a more-powerful chain search, but that will require some
changes to allow the combiner routines to access the AA object).

This should complete the initial implementation of the optimized unaligned
Altivec load expansion. There is some refactoring that should be done, but
that will happen when the unaligned store expansion is added.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182719 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-26 18:08:30 +00:00
Hal Finkel
5a0e60425f PPC: Combine duplicate (offset) lvsl Altivec intrinsics
The lvsl permutation control instruction is a function only of the alignment of
the pointer operand (relative to the 16-byte natural alignment of Altivec
vectors). As a result, multiple lvsl intrinsics where the operands differ by a
multiple of 16 can be combined.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182708 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-25 04:05:05 +00:00
Andrew Trick
ac6d9bec67 Track IR ordering of SelectionDAG nodes 2/4.
Change SelectionDAG::getXXXNode() interfaces as well as call sites of
these functions to pass in SDLoc instead of DebugLoc.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182703 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-25 02:42:55 +00:00
Hal Finkel
80d10ded8c PPC: Initial support for permutation-based unaligned Altivec loads
Altivec only directly supports aligned loads, but the loads have a strange
property: If given an unaligned address, they truncate the address to the next
lower aligned address, and load from there.  This property, along with an extra
load and some special-purpose permutation-control instructions that generate
the appropriate permutations from the original unaligned address, allow
efficient lowering of aligned loads. This code uses the trick explained in the
Apple Velocity Engine optimization overview document to prevent the needed
extra load from possibly causing a page fault if the original address happens
to be aligned.

As noted in the FIXMEs, there are several additional optimizations that can be
performed to reduce the cost of these loads even more. These will be
implemented in future commits.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182691 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-24 23:00:14 +00:00
Matt Arsenault
225ed7069c Add LLVMContext argument to getSetCCResultType
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182180 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-18 00:21:46 +00:00
Ulrich Weigand
347a5079e1 [PowerPC] Use true offset value in "memrix" machine operands
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.

This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.

The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions.  This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).

Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.

This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.

This change must be made simultaneously in all places that
access machine operands of this type.  However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182032 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-16 17:58:02 +00:00
Ulrich Weigand
f0ef882828 [PowerPC] Report true displacement value from getPreIndexedAddressParts
DAGCombiner::CombineToPreIndexedLoadStore calls a target routine to
decompose a memory address into a base/offset pair.  It expects the
offset (if constant) to be the true displacement value in order to
perform optional additional optimizations; in particular, to convert
other uses of the original pointer into uses of the new base pointer
after pre-increment.

The PowerPC implementation of getPreIndexedAddressParts, however,
simply calls SelectAddressRegImm, which returns a TargetConstant.
This value is appropriate for encoding into the instruction, but
it is not always usable as true displacement value:

- Its type is always MVT::i32, even on 64-bit, where addresses
  ought to be i64 ... this causes the optimization to simply
  always fail on 64-bit due to this line in DAGCombiner:

      // FIXME: In some cases, we can be smarter about this.
      if (Op1.getValueType() != Offset.getValueType()) {

- Its value is truncated to an unsigned 16-bit value if negative.
  This causes the above opimization to generate wrong code.

This patch fixes both problems by simply returning the true
displacement value (in its original type).  This doesn't
affect any other user of the displacement.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182012 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-16 14:53:05 +00:00
Hal Finkel
b1fd3cd78f Implement PPC counter loops as a late IR-level pass
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.

The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.

This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).

The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181927 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-15 21:37:41 +00:00
Bill Schmidt
5bbdb19041 Implement the PowerPC system call (sc) instruction.
Instruction added at request of Roman Divacky.  Tested via asm-parser.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181821 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-14 19:35:45 +00:00