Many vector operations never had itineraries. Since the new machine
model was a mapping from existing itinerary classes, we don't have a
model for these. We still want to migrate A9 even though no one has
invested in a complete model, so mark it incomplete to avoid the
scheduler asserting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198123 91177308-0d34-0410-b5e6-96231b3b80d8
Factor the MachineFunctionPass into MachineSchedulerBase.
Split the DAG class into ScheduleDAGMI and SchedulerDAGMILive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198119 91177308-0d34-0410-b5e6-96231b3b80d8
vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.
Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.
This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.
Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198113 91177308-0d34-0410-b5e6-96231b3b80d8
widespread glibc bugs.
The glibc implementation of exp10 has a very serious precision bug in
version 2.15 (and older versions). This is still very widely used (the
current Ubuntu LTS for example uses it) and so it isn't reasonable to
make transforms that produce these functions. This fixes many
miscompiles introduced when we started transforming pow(10.0, ...) into
exp10, and it may have fixed other latent miscompiles where exp10
provided sufficient precision but exp10f did not.
This is all really horrible. The primary bug has been fixed for over
a year and glibc 2.18 works correctly for the test cases I have, but it
will be 2017 before the LTS using 2.15 is no longer supported by Ubuntu
(and thus reasonable for folks to be relying on). =[ We're either going
to need to live without these optimizations, or find a way to switch
behavior more dynamically than using simply the fact that the OS is
"Linux".
To make matters worse, there appears to be significant testing and
fixing of numerous other bugs in the exp10 family of functions right now
in glibc. While those haven't been causing problems I've seen in the
wild, it gives me concerns that we may need to wait until an even later
release of glibc before we can reliably transform code into exp10.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198093 91177308-0d34-0410-b5e6-96231b3b80d8
The .even directive aligns content to an evan-numbered address. This is an ARM
specific directive applicable to any section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198031 91177308-0d34-0410-b5e6-96231b3b80d8
E.g. the codegen result is
fmls v1.2s, v0.2s, v2.s[3]
which is expected to be
fmls v0.2s, v1.2s, v2.s[3]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198001 91177308-0d34-0410-b5e6-96231b3b80d8
...namely LOAD AND ADD, LOAD AND AND, LOAD AND OR and LOAD AND EXCLUSIVE OR.
LOAD AND ADD LOGICAL isn't really separately useful for LLVM.
I'll look at adding reusing the CC results in new year.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197985 91177308-0d34-0410-b5e6-96231b3b80d8
DAG.getVectorShuffle() doesn't always return a vector_shuffle node.
If mask is the exact sequence of it's operand(For example, operand_0
is v8i8, and the mask is 0, 1, 2, 3, 4, 5, 6, 7), it will directly
return that operand. So a check is added here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197967 91177308-0d34-0410-b5e6-96231b3b80d8
This failure caused by improper condition when lowering shuffle_vector
to scalar_to_vector. After this patch NEON_VDUP with v1i64 will not
be generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197966 91177308-0d34-0410-b5e6-96231b3b80d8
Check for single use of fmul node in fused multiply patterns
to allow generation of fused multiply add/sub instructions.
Otherwise fmul operation ends up being repeated more than
once which does not help peformance on targets with
only one MAC unit, as for example cortex-a53.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197929 91177308-0d34-0410-b5e6-96231b3b80d8
The correct pattern matching should be:
- fnmadd is (-Ra) + (-Rn)*Rm which should be matched as:
fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm))))
- fnmsub is (-Ra) + Rn*Rm which should be matched as
fma node:$Rn, node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra))))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197928 91177308-0d34-0410-b5e6-96231b3b80d8
(optional) DWARF sections, so compiling with -g does not result in
different code being generated.
rdar://problem/15623193
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197922 91177308-0d34-0410-b5e6-96231b3b80d8
The bkpt mnemonic has an implicit immediate constant of 0 unless otherwise
specified. Add an instruction alias for the unvalued breakpoint mnemonic to
treat it as a 0. This improves compatibility with GNU AS.
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197913 91177308-0d34-0410-b5e6-96231b3b80d8
If the extension of a loaded value is compared against zero and used in
other arithmetic, InstCombine will change the comparison to use the
unextended load. It's also possible that the comparison could be against
the unextended load from the outset.
In DAG form this becomes a truncation of an extending load. We want to
strip the truncation if possible so that we can use load-and-test instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197804 91177308-0d34-0410-b5e6-96231b3b80d8
The handling of ANY_EXTEND and ZERO_EXTEND was too strict. In this context
we can treat ZERO_EXTEND in much the same way as an AND and then also handle
outermost ZERO_EXTENDs.
I couldn't find a test that benefited from the ANY_EXTEND change, but it's
more obvious to write it this way once SIGN_EXTEND and ZERO_EXTEND are
handled differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197802 91177308-0d34-0410-b5e6-96231b3b80d8
The .pool directive is an alias for the .ltorg directive used to create a
literal pool. Simply treat .pool as if .ltorg was passed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197787 91177308-0d34-0410-b5e6-96231b3b80d8
v2: Add ftrunc->TRUNC pattern instead of replacing int_AMDGPU_trunc
v3: move ftrunc pattern next to TRUNC definition, it's available since R600
Patch By: Jan Vesely
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197783 91177308-0d34-0410-b5e6-96231b3b80d8
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197768 91177308-0d34-0410-b5e6-96231b3b80d8
this commit as the only one on the Blamelist so I quickly reverted this.
However it was actually Nick's change who has since fixed that issue.
Original commit message:
Changed the X86 assembler for intel syntax to work with directional labels.
The X86 assembler as a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following an Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197744 91177308-0d34-0410-b5e6-96231b3b80d8
We dump any non-empty assembler constant pools after a successful
parse of an assembly file that uses the ldr pseudo opcode. These
per-section constant pools should be output in a deterministic order
to ensure that we always generate the same output when printing the
output with an AsmStreamer.
This patch changes the map data struture used to associate a section
with its constant pool to a MapVector to ensure deterministic
output. Because this map type does not support deletion, we now
check that the constant pool is not empty before dumping its entries
and clear the entries after emitting them with the streamer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197735 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 assembler has a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following the Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197728 91177308-0d34-0410-b5e6-96231b3b80d8
The condition in selects is supposed to be i1.
Make sure we are just reading the less significant bit
of the 8 bits width value to match this constraint.
<rdar://problem/15651765>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197712 91177308-0d34-0410-b5e6-96231b3b80d8
This directive will write out the assembler-maintained constant
pool for the current section. These constant pools are created to
support the ldr-pseudo instruction (e.g. ldr r0, =val).
The directive can be used by the programmer to place the constant
pool in a location that can be reached by a pc-relative offset in
the ldr instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197711 91177308-0d34-0410-b5e6-96231b3b80d8
The ldr-pseudo opcode is a convenience for loading 32-bit constants.
It is converted into a pc-relative load from a constant pool. For
example,
ldr r0, =0x10001
ldr r1, =bar
will generate this output in the final assembly
ldr r0, .Ltmp0
ldr r1, .Ltmp1
...
.Ltmp0: .long 0x10001
.Ltmp1: .long bar
Sketch of the LDR pseudo implementation:
Keep a map from Section => ConstantPool
When parsing ldr r0, =val
parse val as an MCExpr
get ConstantPool for current Section
Label = CreateTempSymbol()
remember val in ConstantPool at next free slot
add operand to ldr that is MCSymbolRef of Label
On finishParse() callback
Write out all non-empty constant pools
for each Entry in ConstantPool
Emit Entry.Label
Emit Entry.Value
Possible improvements to be added in a later patch:
1. Does not convert load of small constants to mov
(e.g. ldr r0, =0x1 => mov r0, 0x1)
2. Does reuse constant pool entries for same constant
The implementation was tested for ARM, Thumb1, and Thumb2 targets on
linux and darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197708 91177308-0d34-0410-b5e6-96231b3b80d8