Buildbots for some hosts may choose to build only their own backend in order to
maximise testing-turnaround time. Move the test into a prefixed directory so
lit's standard "backend specific" suppression can be done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169604 91177308-0d34-0410-b5e6-96231b3b80d8
by virtue of inbounds GEPs that preclude a null pointer.
This is a very common pattern in the code generated by std::vector and
other standard library routines which use allocators that test for null
pervasively. This is one step closer to teaching Clang+LLVM to be able
to produce an empty function for:
void f() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
}
Which is related to getting them to completely fold SmallVector
push_back sequences into constants when inlining and other optimizations
make that a possibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169573 91177308-0d34-0410-b5e6-96231b3b80d8
check if loads that happen in between stores alias with the first store in the
chain, only with the second store onwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169516 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of unconditionally storing origin with every application store,
only do this when the shadow of the stored value is != 0.
This change also delays instrumentation of stores until after the walk over
function's instructions, because adding new basic blocks confuses InstVisitor.
We only keep 1 origin value per 4 bytes of application memory. This change
fixes the bug when a store of a single clean byte wiped the origin for the
whole 4-byte area.
Since stores of uninitialized values are relatively uncommon, this change
improves performance of track-origins mode by 5% median and by up to 47% on
specs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169490 91177308-0d34-0410-b5e6-96231b3b80d8
Some languages, e.g. Ada and Pascal, allow you to specify that the array bounds
are different from the default (1 in these cases). If we have a lower bound
that's non-default, then we emit the lower bound. We also calculate the correct
upper bound in those cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169484 91177308-0d34-0410-b5e6-96231b3b80d8
RUN: a
RUN: b || true
as "a && (b || true)" in Tcl mode, and as "(a && b) || true" in sh mode.
Everyone seems to (quite reasonably) write tests assuming the Tcl behavior,
so use that in sh mode too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169441 91177308-0d34-0410-b5e6-96231b3b80d8
This is much simpler to reason about, more efficient, and
fixes some corner cases involving implicit super-register defs.
Fixed rdar://12797931.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169425 91177308-0d34-0410-b5e6-96231b3b80d8
The new command line option -unwind-info dumps the Win64 EH unwind
data to the console. This is a nice feature if you need to debug
generated EH data (e.g. from LLVM). Includes a test case.
Initial patch by João Matos, extensions and rework by Kai Nacke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169415 91177308-0d34-0410-b5e6-96231b3b80d8
This is for the lldb team so most of but not all of the values are
to be printed as hex with this option. Some small values like the
scale in an X86 address were requested to printed in decimal
without the leading 0x.
There may be some tweaks need to places that may still be in
decimal that they want in hex. Specially for arm. I made my best
guess. Any tweaks from here should be simple.
I also did the best I know now with help from the C++ gurus
creating the cleanest formatImm() utility function and containing
the changes. But if someone has a better idea to make something
cleaner I'm all ears and game for changing the implementation.
rdar://8109283
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169393 91177308-0d34-0410-b5e6-96231b3b80d8
reduction variable is not used outside the loop then we ran into an
endless loop. This change checks if we found the original PHI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169324 91177308-0d34-0410-b5e6-96231b3b80d8
This change attempts to simplify (X^Y) -> X or Y in the user's context if we know that
only bits from X or Y are demanded.
A minimized case is provided bellow. This change will simplify "t>>16" into "var1 >>16".
=============================================================
unsigned foo (unsigned val1, unsigned val2) {
unsigned t = val1 ^ 1234;
return (t >> 16) | t; // NOTE: t is used more than once.
}
=============================================================
Note that if the "t" were used only once, the expression would be finally optimized as well.
However, with with this change, the optimization will take place earlier.
Reviewed by Nadav, Thanks a lot!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169317 91177308-0d34-0410-b5e6-96231b3b80d8
The count attribute is more accurate with regards to the size of an array. It
also obviates the upper bound attribute in the subrange. We can also better
handle an unbound array by setting the count to -1 instead of the lower bound to
1 and upper bound to 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169312 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies the fix for PR13303 now with more justification. Based on my
execution of the GDB 7.5 test suite this results in:
expected passes: 16101 -> 20890 (+30%)
unexpected failures: 4826 -> 637 (-77%)
There are 23 checks that used to pass and now fail. They are all in
gdb.reverse. Investigating a few looks like they were accidentally passing
due to extra breakpoints being set by this bug. They're generally due to the
difference in end location between gcc and clang, the test suite is trying to
set breakpoints on the closing '}' that clang doesn't associate with any
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169304 91177308-0d34-0410-b5e6-96231b3b80d8
on 64-bit PowerPC ELF.
The patch includes code to handle external assembly and MC output with the
integrated assembler. It intentionally does not support the "old" JIT.
For the initial-exec TLS model, the ABI requires the following to calculate
the address of external thread-local variable x:
Code sequence Relocation Symbol
ld 9,x@got@tprel(2) R_PPC64_GOT_TPREL16_DS x
add 9,9,x@tls R_PPC64_TLS x
The register 9 is arbitrary here. The linker will replace x@got@tprel
with the offset relative to the thread pointer to the generated GOT
entry for symbol x. It will replace x@tls with the thread-pointer
register (13).
The two test cases verify correct assembly output and relocation output
as just described.
PowerPC-specific selection node variants are added for the two
instructions above: LD_GOT_TPREL and ADD_TLS. These are inserted
when an initial-exec global variable is encountered by
PPCTargetLowering::LowerGlobalTLSAddress(), and later lowered to
machine instructions LDgotTPREL and ADD8TLS. LDgotTPREL is a pseudo
that uses the same LDrs support added for medium code model's LDtocL,
with a different relocation type.
The rest of the processing is straightforward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169281 91177308-0d34-0410-b5e6-96231b3b80d8
The count field is necessary because there isn't a difference between the 'lo'
and 'hi' attributes for a one-element array and a zero-element array. When the
count is '0', we know that this is a zero-element array. When it's >=1, then
it's a normal constant sized array. When it's -1, then the array is unbounded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169218 91177308-0d34-0410-b5e6-96231b3b80d8
Added the code that actually performs the if-conversion during vectorization.
We can now vectorize this code:
for (int i=0; i<n; ++i) {
unsigned k = 0;
if (a[i] > b[i]) <------ IF inside the loop.
k = k * 5 + 3;
a[i] = k; <---- K is a phi node that becomes vector-select.
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169217 91177308-0d34-0410-b5e6-96231b3b80d8
The type of shirt-right (logical or arithemetic) should remain unchanged
when transforming "X << C1 >> C2" into "X << (C1-C2)"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169209 91177308-0d34-0410-b5e6-96231b3b80d8
the alignment is clamped to TargetFrameLowering.getStackAlignment if the target
does not support stack realignment or the option "realign-stack" is off.
This will cause miscompile if the address is treated as aligned and add is
replaced with or in DAGCombine.
Added a bool StackRealignable to TargetFrameLowering to check whether stack
realignment is implemented for the target. Also added a bool RealignOption
to MachineFrameInfo to check whether the option "realign-stack" is on.
rdar://12713765
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169197 91177308-0d34-0410-b5e6-96231b3b80d8
is not yet good enough for more sophistication. The important goal of this
test is to make sure llc doesn't crash on this IR like it used to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169146 91177308-0d34-0410-b5e6-96231b3b80d8
; CHECK: [[VAR:[a-z]]]
The problem was that to find the end of the regex var definition, it was
simplistically looking for the next ]] and finding the incorrect one. A
better approach is to count nesting of brackets (taking escaping into
account). This way the brackets that are part of the regex can be discovered
and skipped properly, and the ]] ending is detected in the right place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169109 91177308-0d34-0410-b5e6-96231b3b80d8