This doesn't reset all of the target options within the TargetOptions
object. This is because some of those are ABI-specific and must be determined if
it's okay to change those on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176986 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Statistics are still available in Release+Asserts (any +Asserts builds),
and stats can also be turned on with LLVM_ENABLE_STATS.
Move some of the FastISel stats that were moved under DEBUG()
back out of DEBUG(), since stats are disabled across the board now.
Many tests depend on grepping "-stats" output. Move those into
a orig_dir/Stats/. so that they can be marked as unsupported
when building without statistics.
Differential Revision: http://llvm-reviews.chandlerc.com/D486
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176733 91177308-0d34-0410-b5e6-96231b3b80d8
LegalizeDAG.cpp uses the value of the comparison operands when checking
the legality of BR_CC, so DAGCombiner should do the same.
v2:
- Expand more BR_CC value types for NVPTX
v3:
- Expand correct BR_CC value types for Hexagon, Mips, and XCore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176694 91177308-0d34-0410-b5e6-96231b3b80d8
Code generation makes some basic assumptions about the IR it's been given. In
particular, if there is only one 'invoke' in the function, then that invoke
won't be going away. However, with the advent of the `llvm.donothing' intrinsic,
those invokes may go away. If all of them go away, the landing pad no longer has
any users. This confuses the back-end, which asserts.
This happens with SjLj exceptions, because that's the model that modifies the IR
based on there being invokes, etc. in the function.
Remove any invokes of `llvm.donothing' during SjLj EH preparation. This will
give us a CFG that the back-end won't be confused about. If all of the invokes
in a function are removed, then the SjLj EH prepare pass won't insert the bogus
code the relies upon the invokes being there.
<rdar://problem/13228754&13316637>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176677 91177308-0d34-0410-b5e6-96231b3b80d8
rdar:13370002 [pre-RA-sched] assertion: released too many times
I tracked this down to an earlier hack that is no longer applicable
and interfered with normal scheduler logic. With the changes in
r176037, it was causing an instruction to be scheduled multiple times.
I have an external test case that I tried hard to reduce and
failed. I can't even reproduce with llc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176636 91177308-0d34-0410-b5e6-96231b3b80d8
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176364 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAGIsel::LowerArguments needs a function, not a basic block. So it
makes sense to pass it the function instead of extracting a basic-block from
the function and then tossing it. This is also more self-documenting (functions
have arguments, BBs don't).
In addition, added comments to a couple of Select* methods.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176305 91177308-0d34-0410-b5e6-96231b3b80d8
This patch disables the counters on non-debug builds. This reduces the runtime of SelectionDAGISel::SelectCodeCommon by ~5%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176214 91177308-0d34-0410-b5e6-96231b3b80d8
fewer scalar integer (i32 or i64) arguments. It completely eliminates the need
for SDISel for trivial functions.
Also, add the new llc -fast-isel-abort-args option, which is similar to
-fast-isel-abort option, but for formal argument lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176052 91177308-0d34-0410-b5e6-96231b3b80d8
memory intrinsics in the SDAG builder.
When alignment is zero, the lang ref says that *no* alignment
assumptions can be made. This is the exact opposite of the internal API
contracts of the DAG where alignment 0 indicates that the alignment can
be made to be anything desired.
There is another, more explicit alignment that is better suited for the
role of "no alignment at all": an alignment of 1. Map the intrinsic
alignment to this early so that we don't end up generating aligned DAGs.
It is really terrifying that we've never seen this before, but we
suddenly started generating a large number of alignment 0 memcpys due to
the new code to do memcpy-based copying of POD class members. That patch
contains a bug that rounds bitfield alignments down when they are the
first field. This can in turn produce zero alignments.
This fixes weird crashes I've seen in library users of LLVM on 32-bit
hosts, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176022 91177308-0d34-0410-b5e6-96231b3b80d8
One of the phases of SelectionDAG is LegalizeVectors. We don't need to sort the DAG and copy nodes around if there are no vector ops.
Speeds up the compilation time of SelectionDAG on a big scalar workload by ~8%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175929 91177308-0d34-0410-b5e6-96231b3b80d8
It was incorrectly checking a Function* being an IntrinsicInst* which
isn't possible. It should always have been checking the CallInst* instead.
Added test case for x86 which ensures we only get one constant load.
It was 2 before this change.
rdar://problem/13267920
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175853 91177308-0d34-0410-b5e6-96231b3b80d8
A legal BUILD_VECTOR goes in and gets constant folded into another legal
BUILD_VECTOR so we don't lose any legality here. The problematic PPC
optimization that made this check necessary was fixed recently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175759 91177308-0d34-0410-b5e6-96231b3b80d8
(2xi32) (truncate ((2xi64) bitcast (buildvector i32 a, i32 x, i32 b, i32 y)))
can be folded into a (2xi32) (buildvector i32 a, i32 b).
Such a DAG would cause uneccessary vdup instructions followed by vmovn
instructions.
We generate this code on ARM NEON for a setcc olt, 2xf64, 2xf64. For example, in
the vectorized version of the code below.
double A[N];
double B[N];
void test_double_compare_to_double() {
int i;
for(i=0;i<N;i++)
A[i] = (double)(A[i] < B[i]);
}
radar://13191881
Fixes bug 15283.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175670 91177308-0d34-0410-b5e6-96231b3b80d8
- When extloading from a vector with non-byte-addressable element, e.g.
<4 x i1>, the current logic breaks. Extend the current logic to
fix the case where the element type is not byte-addressable by loading
all bytes, bit-extracting/packing each element.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175642 91177308-0d34-0410-b5e6-96231b3b80d8
If the frame pointer is omitted, and any stack changes occur in the inline
assembly, e.g.: "pusha", then any C local variable or C argument references
will be incorrect.
I pass no judgement on anyone who would do such a thing. ;)
rdar://13218191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175334 91177308-0d34-0410-b5e6-96231b3b80d8
If two functions require different features (e.g., `-mno-sse' vs. `-msse') then
we want to honor that, especially during LTO. We can do that by resetting the
subtarget's features depending upon the 'target-feature' attribute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175314 91177308-0d34-0410-b5e6-96231b3b80d8
- add sincos to runtime library if target triple environment is GNU
- added canCombineSinCosLibcall() which checks that sincos is in the RTL and
if the environment is GNU then unsafe fpmath is enabled (required to
preserve errno)
- extended sincos-opt lit test
Reviewed by: Hal Finkel
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175283 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombiner::ReduceLoadWidth was converting (trunc i32 (shl i64 v, 32))
into (shl i32 v, 32) into undef. To prevent this, check the shift count
against the final result size.
Patch by: Kevin Schoedel
Reviewed by: Nadav Rotem
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174972 91177308-0d34-0410-b5e6-96231b3b80d8