phi nodes. It is called from MergeBlockIntoPredecessor which is
called from GVN, which claims to preserve these.
I'm skeptical that this is the actual problem behind PR8954, but
this is a stab in the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123222 91177308-0d34-0410-b5e6-96231b3b80d8
point values to their integer representation through the SSE intrinsic
calls. This is the last part of a README.txt entry for which I have real
world examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123206 91177308-0d34-0410-b5e6-96231b3b80d8
There's an inherent tension in DAGCombine between assuming
that things will be put in canonical form, and the Depth
mechanism that disables transformations when recursion gets
too deep. It would not surprise me if there's a lot of little
bugs like this one waiting to be discovered. The mechanism
seems fragile and I'd suggest looking at it from a design viewpoint.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123191 91177308-0d34-0410-b5e6-96231b3b80d8
These functions not longer assert when passed 0, but simply return false instead.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123155 91177308-0d34-0410-b5e6-96231b3b80d8
Fix the TargetRegisterInfo::NoRegister places where someone preferred
typing 'TargetRegisterInfo::NoRegister' instead of typing '0'.
Note that TableGen is already emitting xx::NoRegister in xxGenRegisterNames.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123140 91177308-0d34-0410-b5e6-96231b3b80d8
The numbering plan is now:
0 NoRegister.
[1;2^30) Physical registers.
[2^30;2^31) Stack slots.
[2^31;2^32) Virtual registers. (With -1u and -2u used by DenseMapInfo.)
Each segment is filled from the left, so any mistaken interpretation should
quickly cause crashes.
FirstVirtualRegister has been removed. TargetRegisterInfo provides predicates
conversion functions that should be used instead of interpreting register
numbers manually.
It is now legal to pass NoRegister to isPhysicalRegister() and
isVirtualRegister(). The result is false in both cases.
It is quite rare to represent stack slots in this way, so isPhysicalRegister()
and isVirtualRegister() require that isStackSlot() be checked first if it can
possibly return true. This allows a very fast implementation of the common
predicates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123137 91177308-0d34-0410-b5e6-96231b3b80d8
perform rounding other than truncation in the IR. Common C code for this
turns into really an LLVM intrinsic call that blocks a lot of further
optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123135 91177308-0d34-0410-b5e6-96231b3b80d8
a + {b,+,stride} into {a+b,+,stride} (because a is LIV),
then the resultant AddRec is NUW/NSW if the client says it
is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123133 91177308-0d34-0410-b5e6-96231b3b80d8
void f(int* begin, int* end) { std::fill(begin, end, 0); }
which turns into a != exit expression where one pointer is
strided and (thanks to step #1) known to not overflow, and
the other is loop invariant.
The observation here is that, though the IV is strided by
4 in this case, that the IV *has* to become equal to the
end value. It cannot "miss" the end value by stepping over
it, because if it did, the strided IV expression would
eventually wrap around.
Handle this by turning A != B into "A-B != 0" where the A-B
part is known to be NUW.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123131 91177308-0d34-0410-b5e6-96231b3b80d8