Commit Graph

14 Commits

Author SHA1 Message Date
Justin Holewinski
21fdcb0271 [NVPTX] Add NVVMReflect pass to allow compile-time selection of
specific code paths.

This allows us to write code like:

  if (__nvvm_reflect("FOO"))
    // Do something
  else
    // Do something else

and compile into a library, then give "FOO" a value at kernel
compile-time so the check becomes a no-op.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178416 91177308-0d34-0410-b5e6-96231b3b80d8
2013-03-30 14:29:25 +00:00
Justin Holewinski
3639ce2575 [NVPTX] Run clang-format on all NVPTX sources.
Hopefully this resolves any outstanding style issues and gives us
an automated way of ensuring we conform to the style guidelines.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178415 91177308-0d34-0410-b5e6-96231b3b80d8
2013-03-30 14:29:21 +00:00
Justin Holewinski
7eacad03ef [NVPTX] Disable vector registers
Vectors were being manually scalarized by the backend.  Instead,
let the target-independent code do all of the work.  The manual
scalarization was from a time before good target-independent support
for scalarization in LLVM. However, this forces us to specially-handle
vector loads and stores, which we can turn into PTX instructions that
produce/consume multiple operands.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174968 91177308-0d34-0410-b5e6-96231b3b80d8
2013-02-12 14:18:49 +00:00
Chandler Carruth
aeef83c6af Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.

The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.

The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.

The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.

The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.

The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.

The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.

The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.

Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.

Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.

Commits to update DragonEgg and Clang will be made presently.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
Chandler Carruth
0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00
Roman Divacky
38b06020db Remove duplicate includes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170902 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-21 17:06:44 +00:00
Chandler Carruth
d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00
Nadav Rotem
2704834661 Implement a basic VectorTargetTransformInfo interface to be used by the loop and bb vectorizers for modeling the cost of instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166593 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-24 17:22:41 +00:00
Nadav Rotem
cbd9a19b5d Reapply the TargerTransformInfo changes, minus the changes to LSR and Lowerinvoke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166248 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-18 23:22:48 +00:00
Bob Wilson
3b9a911efc Temporarily revert the TargetTransform changes.
The TargetTransform changes are breaking LTO bootstraps of clang.  I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.

This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-18 05:43:52 +00:00
Nadav Rotem
e3d0e86919 Add a new interface to allow IR-level passes to access codegen-specific information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165665 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-10 22:04:55 +00:00
Micah Villmow
3574eca1b0 Move TargetData to DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165402 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-08 16:38:25 +00:00
Bob Wilson
564fbf6aff Add all codegen passes to the PassManager via TargetPassConfig.
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging.  No functionality change.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159567 91177308-0d34-0410-b5e6-96231b3b80d8
2012-07-02 19:48:31 +00:00
Justin Holewinski
49683f3c96 This patch adds a new NVPTX back-end to LLVM which supports code generation for NVIDIA PTX 3.0. This back-end will (eventually) replace the current PTX back-end, while maintaining compatibility with it.
The new target machines are:

nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX

The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.

NV_CONTRIB

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156196 91177308-0d34-0410-b5e6-96231b3b80d8
2012-05-04 20:18:50 +00:00