Determining the address of a TLS variable results in a function call in
certain TLS models. This means that a simple ICmpInst might actually
result in invalidating the CTR register.
In such cases, do not attempt to rely on the CTR register for loop
optimization purposes.
This fixes PR22034.
Differential Revision: http://reviews.llvm.org/D6786
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224890 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Consider the following IR:
%3 = load i8* undef
%4 = trunc i8 %3 to i1
%5 = call %jl_value_t.0* @foo(..., i1 %4, ...)
ret %jl_value_t.0* %5
Bools (that are the result of direct truncs) are lowered as whatever
the argument to the trunc was and a "and 1", causing the part of the
MBB responsible for this argument to look something like this:
%vreg8<def,tied1> = AND8ri %vreg7<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg8,%vreg7
Later, when the load is lowered, it will insert
%vreg15<def> = MOV8rm %vreg14, 1, %noreg, 0, %noreg; mem:LD1[undef] GR8:%vreg15 GR64:%vreg14
but remember to (at the end of isel) replace vreg7 by vreg15. Now for
the bug. In fast isel lowering, we mistakenly mark vreg8 as the result
of the load instead of the trunc. This adds a fixup to have
vreg8 replaced by whatever the result of the load is as well, so
we end up with
%vreg15<def,tied1> = AND8ri %vreg15<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg15
which is an SSA violation and causes problems later down the road.
This fixes PR21557.
Test Plan: Test test case from PR21557 is added to the test suite.
Reviewers: ributzka
Reviewed By: ributzka
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6245
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224884 91177308-0d34-0410-b5e6-96231b3b80d8
A multiply cannot unsigned wrap if there are bitwidth, or more, leading
zero bits between the two operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224849 91177308-0d34-0410-b5e6-96231b3b80d8
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224847 91177308-0d34-0410-b5e6-96231b3b80d8
When materializing constant i1 values, they must be zero extended. We represent
i1 values as [0, 1], not [0, -1], in i32 registers. As it turns out, this code
path was dead for i1 values prior to r216006 (which is why this did not manifest in
miscompiles until recently).
Fixes -O0 self-hosting on PPC64/Linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224842 91177308-0d34-0410-b5e6-96231b3b80d8
It's possible to have a prior definition of a symbol in module asm.
Raise an error instead of crashing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224828 91177308-0d34-0410-b5e6-96231b3b80d8
Bob Wilson pointed out the unnecessary checks that had been committed to the
instruction check predicates. The check was meant to ensure that the check was
not accidentally applied to non-ARM instructions. This is better served as an
assertion rather than a condition check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224825 91177308-0d34-0410-b5e6-96231b3b80d8
.set directives may be overridden by other .set directives as well as
label definitions.
This fixes PR22019.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224811 91177308-0d34-0410-b5e6-96231b3b80d8
Correct the line information generation for preprocessed assembly. Although we
tracked the source information for the macro instantiation, we failed to account
for the fact that we were instantiating a macro, which is populated into a new
buffer and that the line information would be relative to the definition rather
than the actual instantiation location. This could cause the line number
associated with the statement to be very high due to wrapping of the difference
calculated for the preprocessor line information emitted into the stream.
Properly calculate the line for the macro instantiation, referencing the line
where the macro is actually used as GCC/gas do.
The test case uses x86, though the same problem exists on any other target using
the LLVM IAS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224810 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a hardcoded list of instructions in the CodeEmitter. Eventually I intend to remove the predicates on the affected instructions since in any given mode two of them are valid if we supported addr32/addr16 prefixes in the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224809 91177308-0d34-0410-b5e6-96231b3b80d8
This function constructs the main liverange by merging all subranges if
subregister liveness tracking is available. This should be slightly
faster to compute instead of performing the liveness calculation again
for the main range. More importantly it avoids cases where the main
liverange would cover positions where no subrange was live. These cases
happened for partial definitions where the actual defined part was dead
and only the undefined parts used later.
The register coalescing requires that every part covered by the main
live range has at least one subrange live.
I also expect this function to become usefull later for places where the
subranges are modified in a way that it is hard to correctly fix the
main liverange in the machine scheduler, we can simply reconstruct it
from subranges then.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224806 91177308-0d34-0410-b5e6-96231b3b80d8
Without a reference the code did not remember when moving the iterators
of the subranges/registerunit ranges forward and instead would scan from
the beginning again at the next position.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224803 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ramkumar Ramachandra <artagnon@gmail.com>.
Also remove Llvm_executionengine.get_pointer_to_global, as it
is actually deprecated and didn't appear in a stable release.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224801 91177308-0d34-0410-b5e6-96231b3b80d8
within a partition of an alloca in SROA.
This reflects the fact that the organization of the slices isn't really
ideal for analysis, but is the naive way in which the slices are
available while we're processing them in the core partitioning
algorithm.
It is possible we could improve matters, and I've left a FIXME with
one of my ideas for how to do this, but it is a lot of work, the benefit
is somewhat minor, and it isn't clear that it would be strictly better.
=/ Not really satisfying, but I'm out of really good ideas.
This also improves one place where the debug logging failed to mark some
split partitions. Now we log in one place, slightly later, and with
accurate information about whether the slice is split by the partition
being rewritten.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224800 91177308-0d34-0410-b5e6-96231b3b80d8
operate in terms of the new Partition class, and generally have a more
clear set of arguments. No functionality changed.
The most notable improvements here are consistently using the
terminology of 'partition' for a collection of slices that will be
rewritten together and 'slice' for a region of an alloca that is used by
a particular instruction.
This also makes it more clear that the split things are actually slices
as well, just ones that will be split by the proposed partition.
This doesn't yet address the confusing aspects of the partition's
interface where slices that will be split by the partition and start
prior to the partition are accesssed via Partition::splitSlices() while
the core range of slices exposed by a Partition includes both unsplit
slices and slices which will be split by the end, but started within the
offset range of the partition. This is particularly hard to address
because the algorithm which computes partitions quite literally doesn't
know which slices these will end up being until too late. I'm looking at
whether I can fix that or not, but I'm not optimistic. I'll update the
comments and/or names to further explain this either way. I've also
added one FIXME in this patch relating to this confusion so that I don't
forget about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224798 91177308-0d34-0410-b5e6-96231b3b80d8