This code:
float floatingPointComparison(float x, float y) {
double product = (double)x * y;
if (product == 0.0)
return product;
return product - 1.0;
}
produces this:
_floatingPointComparison:
0000000000000000 cvtss2sd %xmm1,%xmm1
0000000000000004 cvtss2sd %xmm0,%xmm0
0000000000000008 mulsd %xmm1,%xmm0
000000000000000c pxor %xmm1,%xmm1
0000000000000010 ucomisd %xmm1,%xmm0
0000000000000014 jne 0x00000004
0000000000000016 jp 0x00000002
0000000000000018 jmp 0x00000008
000000000000001a addsd 0x00000006(%rip),%xmm0
0000000000000022 cvtsd2ss %xmm0,%xmm0
0000000000000026 ret
The "jne/jp/jmp" sequence can be reduced to this instead:
_floatingPointComparison:
0000000000000000 cvtss2sd %xmm1,%xmm1
0000000000000004 cvtss2sd %xmm0,%xmm0
0000000000000008 mulsd %xmm1,%xmm0
000000000000000c pxor %xmm1,%xmm1
0000000000000010 ucomisd %xmm1,%xmm0
0000000000000014 jp 0x00000002
0000000000000016 je 0x00000008
0000000000000018 addsd 0x00000006(%rip),%xmm0
0000000000000020 cvtsd2ss %xmm0,%xmm0
0000000000000024 ret
for a savings of 2 bytes.
This xform can happen when we recognize that jne and jp jump to the same "true"
MBB, the unconditional jump would jump to the "false" MBB, and the "true" branch
is the fall-through MBB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97766 91177308-0d34-0410-b5e6-96231b3b80d8
Extracting the low element of a vector is now done with EXTRACT_SUBREG,
and the zero-extension performed by load movss is now modeled with
SUBREG_TO_REG, and so on.
Register-to-register movss and movsd are no longer considered copies;
they are two-address instructions which insert a scalar into a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97354 91177308-0d34-0410-b5e6-96231b3b80d8
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8
function can support dynamic stack realignment. That's a much easier question
to answer at instruction selection stage than whether the function actually
will have dynamic alignment prologue. This allows the removal of the
stack alignment heuristic pass, and improves code quality for cases where
the heuristic would result in dynamic alignment code being generated when
it was not strictly necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93885 91177308-0d34-0410-b5e6-96231b3b80d8
For now, this pass is fairly conservative. It only perform the replacement when both the pre- and post- extension values are used in the block. It will miss cases where the post-extension values are live, but not used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93278 91177308-0d34-0410-b5e6-96231b3b80d8
instruction is copy like where the source and destination registers can
overlap. This is to be used by the coalescable to coalesce the source and
destination registers of instructions like X86::MOVSX64rr32. Apparently
some crazy people believe the coalescer is too simple.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93210 91177308-0d34-0410-b5e6-96231b3b80d8
new AsmPrinter. This is perhaps less elegant than describing them
in terms of MOV32r0 and subreg operations, but it allows the
current register to rematerialize them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93158 91177308-0d34-0410-b5e6-96231b3b80d8
be non-optimal. To be precise, we should avoid folding loads if the instructions
only update part of the destination register, and the non-updated part is not
needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these instructions breaks
the partial register dependency and it can improve performance. e.g.
movss (%rdi), %xmm0
cvtss2sd %xmm0, %xmm0
instead of
cvtss2sd (%rdi), %xmm0
An alternative method to break dependency is to clear the register first. e.g.
xorps %xmm0, %xmm0
cvtss2sd (%rdi), %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91672 91177308-0d34-0410-b5e6-96231b3b80d8
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89711 91177308-0d34-0410-b5e6-96231b3b80d8
- If destination is a physical register and it has a subreg index, use the
sub-register instead.
This fixes PR5423.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88745 91177308-0d34-0410-b5e6-96231b3b80d8
Provide special isLoadFromStackSlotPostFE and isStoreToStackSlotPostFE
interfaces to explicitly request checking for post-frame ptr elimination
operands. This uses a heuristic so it isn't reliable for correctness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@87047 91177308-0d34-0410-b5e6-96231b3b80d8
machine instruction loads or stores from/to a stack slot. Unlike
isLoadFromStackSlot and isStoreFromStackSlot, the instruction may be
something other than a pure load/store (e.g. it may be an arithmetic
operation with a memory operand). This helps AsmPrinter determine when
to print a spill/reload comment.
This is only a hint since we may not be able to figure this out in all
cases. As such, it should not be relied upon for correctness.
Implement for X86. Return false by default for other architectures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@87026 91177308-0d34-0410-b5e6-96231b3b80d8
This patch forbids implicit conversion of DenseMap::const_iterator to
DenseMap::iterator which was possible because DenseMapIterator inherited
(publicly) from DenseMapConstIterator. Conversion the other way around is now
allowed as one may expect.
The template DenseMapConstIterator is removed and the template parameter
IsConst which specifies whether the iterator is constant is added to
DenseMapIterator.
Actually IsConst parameter is not necessary since the constness can be
determined from KeyT but this is not relevant to the fix and can be addressed
later.
Patch by Victor Zverovich!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86636 91177308-0d34-0410-b5e6-96231b3b80d8
unfolding loads for hoisting. getOpcodeAfterMemoryUnfold returns the
opcode of the original operation without the load, not the load
itself, MachineLICM needs to know the operand index in order to get
the correct register class. Extend getOpcodeAfterMemoryUnfold to
return this information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85622 91177308-0d34-0410-b5e6-96231b3b80d8
(for uses marked kill and defs marked dead) a few instructions in
addition to forwards. Also, increase the maximum number of instructions
to scan, as it appears to help in a fair number of cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84061 91177308-0d34-0410-b5e6-96231b3b80d8