Likewise fix up a bunch of other libcalls. While
there I remove NEG_F32 and NEG_F64 since they are
not used anywhere. This fixes 9 Ada ACATS failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45833 91177308-0d34-0410-b5e6-96231b3b80d8
values, which means doing extra legalization work.
It would be easier to get this kind of thing right if
there was some documentation...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45472 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
1) Change the interface to TargetLowering::ExpandOperationResult to
take and return entire NODES that need a result expanded, not just
the value. This allows us to handle things like READCYCLECOUNTER,
which returns two values.
2) Implement (extremely limited) support in LegalizeDAG::ExpandOp for MERGE_VALUES.
3) Reimplement custom lowering in LegalizeDAGTypes in terms of the new
ExpandOperationResult. This makes the result simpler and fully
general.
4) Implement (fully general) expand support for MERGE_VALUES in LegalizeDAGTypes.
5) Implement ExpandOperationResult support for ARM f64->i64 bitconvert and ARM
i64 shifts, allowing them to work with LegalizeDAGTypes.
6) Implement ExpandOperationResult support for X86 READCYCLECOUNTER and FP_TO_SINT,
allowing them to work with LegalizeDAGTypes.
LegalizeDAGTypes now passes several more X86 codegen tests when enabled and when
type legalization in LegalizeDAG is ifdef'd out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44300 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a couple of problems:
1. Don't assume the VT-1 is a VT that is half the size.
2. Treat vectors of FP in the vector path, not the FP path.
This has a couple of remaining problems before it will work with
the code in PR1811: the code below this change assumes that it can
use extload/shift/or to construct the result, which isn't right for
vectors.
This also doesn't handle vectors of 1 or vectors that aren't pow-2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44243 91177308-0d34-0410-b5e6-96231b3b80d8
adjustment fields, and an optional flag. If there is a "dynamic_stackalloc" in
the code, make sure that it's bracketed by CALLSEQ_START and CALLSEQ_END. If
not, then there is the potential for the stack to be changed while the stack's
being used by another instruction (like a call).
This can only result in tears...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44037 91177308-0d34-0410-b5e6-96231b3b80d8
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
of offset and the alignment of ptr if these are both powers of
2. While the ptr alignment is guaranteed to be a power of 2,
there is no reason to think that offset is. For example, if
offset is 12 (the size of a long double on x86-32 linux) and
the alignment of ptr is 8, then the alignment of ptr+offset
will in general be 4, not 8. Introduce a function MinAlign,
lifted from gcc, for computing the minimum guaranteed alignment.
I've tried to fix up everywhere under lib/CodeGen/SelectionDAG/.
I also changed some places that weren't wrong (because both values
were a power of 2), as a defensive change against people copying
and pasting the code.
Hopefully someone who cares about alignment will review the rest
of LLVM and fix up the remaining places. Since I'm on x86 I'm
not very motivated to do this myself...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43421 91177308-0d34-0410-b5e6-96231b3b80d8
To do this it is necessary to add a "always inline" argument to the
memcpy node. For completeness I have also added this node to memmove
and memset. I have also added getMem* functions, because the extra
argument makes it cumbersome to use getNode and because I get confused
by it :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43172 91177308-0d34-0410-b5e6-96231b3b80d8
types. This is needed for SIGN_EXTEND_INREG at least.
It is not clear if this is correct for other operations.
On the other hand, for the various load/store actions
it seems to correct to return the type action, as is
currently done.
Also, it seems that SelectionDAG::getValueType can be
called for extended value types; introduce a map for
holding these, since we don't really want to extend
the vector to be 2^32 pointers long!
Generalize DAGTypeLegalizer::PromoteResult_TRUNCATE
and DAGTypeLegalizer::PromoteResult_INT_EXTEND to handle
the various funky possibilities that apints introduce,
for example that you can promote to a type that needs
to be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43071 91177308-0d34-0410-b5e6-96231b3b80d8
Make two changes:
1) only xform "store of f32" if i32 is a legal type for the target.
2) only xform "store of f64" if either i64 or i32 are legal for the target.
3) if i64 isn't legal, manually lower to 2 stores of i32 instead of letting a
later pass of legalize do it. This is ugly, but helps future changes I'm
about to commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42980 91177308-0d34-0410-b5e6-96231b3b80d8
Factor out the code that expands the "nasty scalar code" for unrolling
vectors into a separate routine, teach it how to handle mixed
vector/scalar operands, as seen in powi, and use it for several operators,
including sin, cos, powi, and pow.
Add support in SplitVectorOp for fpow, fpowi and for several unary
operators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42884 91177308-0d34-0410-b5e6-96231b3b80d8
No compile-time support for constant operations yet,
just format transformations. Make readers and
writers work. Split constants into 2 doubles in
Legalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42865 91177308-0d34-0410-b5e6-96231b3b80d8
use ISD::{S,U}DIVREM and ISD::{S,U}MUL_HIO. Move the lowering code
associated with these operators into target-independent in LegalizeDAG.cpp
and TargetLowering.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42762 91177308-0d34-0410-b5e6-96231b3b80d8
input. APInt unfortunately zero-extends signed integers, so Dale
modified the function to expect zero-extended input. Make this
assumption explicit in the function name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42732 91177308-0d34-0410-b5e6-96231b3b80d8