We know that the blend instructions only use the MSB, so if the mask is
sign-extended then we can convert it into a SHL instruction. This is a
common pattern because the type-legalizer sign-extends the i1 type which
is used by the LLVM-IR for the condition.
Added a new optimization in SimplifyDemandedBits for SIGN_EXTEND_INREG -> SHL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148225 91177308-0d34-0410-b5e6-96231b3b80d8
live across BBs before register allocation. This miscompiled 197.parser
when a cmp + b are optimized to a cbnz instruction even though the CPSR def
is live-in a successor.
cbnz r6, LBB89_12
...
LBB89_12:
ble LBB89_1
The fix consists of two parts. 1) Teach LiveVariables that some unallocatable
registers might be liveouts so don't mark their last use as kill if they are.
2) ARM constantpool island pass shouldn't form cbz / cbnz if the conditional
branch does not kill CPSR.
rdar://10676853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148168 91177308-0d34-0410-b5e6-96231b3b80d8
The QQ and QQQQ registers are not 'real', they are pseudo-registers used
to model some vld and vst instructions.
This makes the call clobber lists longer, but I intend to get rid of
those soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148151 91177308-0d34-0410-b5e6-96231b3b80d8
The registers are placed into the saved registers list in the reverse order,
which is why the original loop was written to loop backwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148064 91177308-0d34-0410-b5e6-96231b3b80d8
lc: X86ISelLowering.cpp:6480: llvm::SDValue llvm::X86TargetLowering::LowerVECTOR_SHUFFLE(llvm::SDValue, llvm::SelectionDAG&) const: Assertion `V1.getOpcode() != ISD::UNDEF&& "Op 1 of shuffle should not be undef"' failed.
Added a test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148044 91177308-0d34-0410-b5e6-96231b3b80d8
Uses the pvArbitrary slot of the TIB, which is reserved for applications. We
only support frames with a static size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148040 91177308-0d34-0410-b5e6-96231b3b80d8
Restore the (obviously wrong) behavior from before r147938 without relying on
undefined behavior. Add a fat FIXME note.
This should fix nightly tester failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148030 91177308-0d34-0410-b5e6-96231b3b80d8
In att style asm syntax memory operand size is derived from suffix attached with mnemonic. In intel style asm syntax it is part of memory operand hence predicate method check is required to select appropriate instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148006 91177308-0d34-0410-b5e6-96231b3b80d8
same pattern. We already had this pattern is a few places, but others
tried to make a rough approximation of an actual DAG structure. As not
everywhere went to this trouble, nothing could rely on this being done.
In fact, I've checked all references to these node Ids, and the ones
that are using the topo-sort properties are actually satisfied with
a strict-weak-ordering. The requirement appears to be that Use >= Def.
I've added a big blurb of comments to this bit of the transform to
clarify why the order is so important for the next reader of the code.
I'm starting with this change as it is very small, and trivially
reverted if something breaks or the >= above really does need to be >.
If that proves the case, we can hide the problem by reverting this
patch, but the problem exists elsewhere as well, and so a more
comprehensive solution will be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148001 91177308-0d34-0410-b5e6-96231b3b80d8
This uses TLS slot 90, which actually belongs to JavaScriptCore. We only support
frames with static size
Patch by Brian Anderson.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147960 91177308-0d34-0410-b5e6-96231b3b80d8
hoped this would revive one of the llvm-gcc selfhost build bots, but it
didn't so it doesn't appear that my transform is the culprit.
If anyone else is seeing failures, please let me know!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147957 91177308-0d34-0410-b5e6-96231b3b80d8
strange build bot failures that look like a miscompile into an infloop.
I'll investigate this tomorrow, but I'd both like to know whether my
patch is the culprit, and get the bots back to green.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147945 91177308-0d34-0410-b5e6-96231b3b80d8
factor the differences that were hiding in one of them into its other
caller, the SRL handling code. No change in behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147940 91177308-0d34-0410-b5e6-96231b3b80d8
mask+shift pairs at the beginning of the ISD::AND case block, and then
hoist the final pattern into a helper function, simplifying and
reflowing it appropriately. This should have no observable behavior
change, but several simplifications fell out of this such as directly
computing the new mask constant, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147939 91177308-0d34-0410-b5e6-96231b3b80d8
extracts and scaled addressing modes into its own helper function. No
functionality changed here, just hoisting and layout fixes falling out
of that hoisting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147937 91177308-0d34-0410-b5e6-96231b3b80d8
detect a pattern which can be implemented with a small 'shl' embedded in
the addressing mode scale. This happens in real code as follows:
unsigned x = my_accelerator_table[input >> 11];
Here we have some lookup table that we look into using the high bits of
'input'. Each entity in the table is 4-bytes, which means this
implicitly gets turned into (once lowered out of a GEP):
*(unsigned*)((char*)my_accelerator_table + ((input >> 11) << 2));
The shift right followed by a shift left is canonicalized to a smaller
shift right and masking off the low bits. That hides the shift right
which x86 has an addressing mode designed to support. We now detect
masks of this form, and produce the longer shift right followed by the
proper addressing mode. In addition to saving a (rather large)
instruction, this also reduces stalls in Intel chips on benchmarks I've
measured.
In order for all of this to work, one part of the DAG needs to be
canonicalized *still further* than it currently is. This involves
removing pointless 'trunc' nodes between a zextload and a zext. Without
that, we end up generating spurious masks and hiding the pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147936 91177308-0d34-0410-b5e6-96231b3b80d8
Allow LDRD to be formed from pairs with different LDR encodings. This was the original intention of the pass. Somewhere along the way, the LDR opcodes were refined which broke the optimization. We really don't care what the original opcodes are as long as they both map to the same LDRD and the immediate still fits.
Fixes rdar://10435045 ARMLoadStoreOptimization cannot handle mixed LDRi8/LDRi12
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147922 91177308-0d34-0410-b5e6-96231b3b80d8
Add a test that checks the stack alignment of a simple function for
Darwin, Linux and NetBSD for 32bit and 64bit mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147888 91177308-0d34-0410-b5e6-96231b3b80d8
This function runs after all constant islands have been placed, and may
shrink some instructions to their 2-byte forms. This can actually cause
some constant pool entries to move out of range because of growing
alignment padding.
Treat instructions that may be shrunk the same as inline asm - they
erode the known alignment bits.
Also reinstate an old assertion in verify(). It is correct now that
basic block offsets include alignments.
Add a single large test case that will hopefully exercise many parts of
the constant island pass.
<rdar://problem/10670199>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147885 91177308-0d34-0410-b5e6-96231b3b80d8