Also add a check for llvm.used in the verifier and simplify clients now that
they can assume they have a ConstantArray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180019 91177308-0d34-0410-b5e6-96231b3b80d8
trying to move as much FastISel logic as possible out of the main path in
SelectionDAGISel - intermixing them just adds confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179902 91177308-0d34-0410-b5e6-96231b3b80d8
When the SlotIndexes pass was introduced it was intended to support insertion
of code during register allocation. Removal of code was a minor consideration
(and raised the question of what to do about dangling SlotIndex objects pointing
to the erased index), so I opted to keep all indexes around indefinitely and
simply null out those that weren't being used.
Nowadays people are moving more code around (e.g. via HandleMove), which means
more zombie indexes. I want to start killing off indexes when we're done with
them to reclaim the resources they use up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179834 91177308-0d34-0410-b5e6-96231b3b80d8
This is a rework of the broken parts in r179373 which were subsequently reverted in r179374 due to incompatibility with C++98 compilers. This version should be ok under C++98.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179520 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator expects minimal physreg live ranges. Schedule
physreg copies accordingly. This is slightly tricky when they occur in
the middle of the scheduling region. For now, this is handled by
rescheduling the copy when its associated instruction is
scheduled. Eventually we may instead bundle them, but only if we can
preserve the bundles as parallel copies during regalloc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179449 91177308-0d34-0410-b5e6-96231b3b80d8
The target hooks are getting out of hand. What does it mean to run
before or after regalloc anyway? Allowing either Pass* or AnalysisID
pass identification should make it much easier for targets to use the
substitutePass and insertPass APIs, and create less need for badly
named target hooks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179140 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PEI as previously described, but correctly handles the case where
the instruction defining the virtual register to be scavenged is the first in
the block. Arnold provided me with a bugpoint-reduced test case, but even that
seems too large to use as a regression test. If I'm successful in cleaning it
up then I'll commit that as well.
Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178919 91177308-0d34-0410-b5e6-96231b3b80d8
Reverting because this breaks one of the LTO builders. Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178916 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178845 91177308-0d34-0410-b5e6-96231b3b80d8
The new instruction scheduling models provide information about the
number of cycles consumed on each processor resource. This makes it
possible to estimate ILP more accurately than simply counting
instructions / issue width.
The functions getResourceDepth() and getResourceLength() now identify
the limiting processor resource, and return a cycle count based on that.
This gives more precise resource information, particularly in traces
that use one resource a lot more than others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178553 91177308-0d34-0410-b5e6-96231b3b80d8
As far as simplify_type is concerned, there are 3 kinds of smart pointers:
* const correct: A 'const MyPtr<int> &' produces a 'const int*'. A
'MyPtr<int> &' produces a 'int *'.
* always const: Even a 'MyPtr<int> &' produces a 'const int*'.
* no const: Even a 'const MyPtr<int> &' produces a 'int*'.
This patch then does the following:
* Removes the unused specializations. Since they are unused, it is hard
to know which kind should be implemented.
* Make sure we don't drop const.
* Fix the default forwarding so that const correct pointer only need
one specialization.
* Simplifies the existing specializations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178147 91177308-0d34-0410-b5e6-96231b3b80d8
As pointed out by Richard Sandiford, my recent updates to the register
scavenger broke targets that use custom spilling (because the new code assumed
that if there were no valid spill slots, than spilling would be impossible).
I don't have a test case, but it should be possible to create one for Thumb 1,
Mips 16, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178073 91177308-0d34-0410-b5e6-96231b3b80d8
The previous algorithm could not deal properly with scavenging multiple virtual
registers because it kept only one live virtual -> physical mapping (and
iterated through operands in order). Now we don't maintain a current mapping,
but rather use replaceRegWith to completely remove the virtual register as
soon as the mapping is established.
In order to allow the register scavenger to return a physical register killed
by an instruction for definition by that same instruction, we now call
RS->forward(I) prior to eliminating virtual registers defined in I. This
requires a minor update to forward to ignore virtual registers.
These new features will be tested in forthcoming commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178058 91177308-0d34-0410-b5e6-96231b3b80d8
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.
To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.
In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177774 91177308-0d34-0410-b5e6-96231b3b80d8
ScavengedRC was a dead private variable (set, but not otherwise used). No
functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177708 91177308-0d34-0410-b5e6-96231b3b80d8
This is a generic function (derived from PEI); moving it into
MachineFrameInfo eliminates a current redundancy between the ARM and AArch64
backends, and will allow it to be used by the PowerPC target code.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177111 91177308-0d34-0410-b5e6-96231b3b80d8
In very rare cases caused by irreducible control flow, the dominating
block can have the same trace head without actually being part of the
trace.
As long as such a dominator still has valid instruction depths, it is OK
to use it for computing instruction depths.
Rename the function to avoid lying, and add a check that instruction
depths are computed for the dominator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176668 91177308-0d34-0410-b5e6-96231b3b80d8
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176364 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAGIsel::LowerArguments needs a function, not a basic block. So it
makes sense to pass it the function instead of extracting a basic-block from
the function and then tossing it. This is also more self-documenting (functions
have arguments, BBs don't).
In addition, added comments to a couple of Select* methods.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176305 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes some problems with too conservative checking where we were
marking all aliases of a register as used, and then also checking all
aliases when allocating a register.
<rdar://problem/13249625>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175782 91177308-0d34-0410-b5e6-96231b3b80d8
Adding new segments to large LiveIntervals can be expensive because the
LiveRange objects after the insertion point may need to be moved left or
right. This can cause quadratic behavior when adding a large number of
segments to a live range.
The LiveRangeUpdater class allows the LIveInterval to be in a temporary
invalid state while segments are being added. It maintains an internal
gap in the LiveInterval when it is shrinking, and it has a spill area
for new segments when the LiveInterval is growing.
The behavior is similar to the existing mergeIntervalRanges() function,
except it allocates less memory for the spill area, and the algorithm is
turned inside out so the loop is driven by the clients.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175644 91177308-0d34-0410-b5e6-96231b3b80d8
and removing instructions. The implementation seems more complicated than it
needs to be, but I couldn't find something simpler that dealt with all of the
corner cases.
Also add a call to repairIndexesInRange() from repairIntervalsInRange().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175601 91177308-0d34-0410-b5e6-96231b3b80d8