The included test case would return the incorrect results, because the expansion
of an shift with a constant shift amount of 0 would generate undefined behavior.
This is because ExpandShiftByConstant assumes that all shifts by constants with
a value of 0 have already been optimized away. This doesn't happen for opaque
constants and usually this isn't a problem, because opaque constants won't take
this code path - they are not supposed to. In the case that the opaque constant
has to be expanded by the legalizer, the legalizer would drop the opaque flag.
In this case we hit the limitations of ExpandShiftByConstant and create incorrect
code.
This commit fixes the legalizer by not dropping the opaque flag when expanding
opaque constants and adding an assertion to ExpandShiftByConstant to catch this
not supported case in the future.
This fixes <rdar://problem/16718472>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207304 91177308-0d34-0410-b5e6-96231b3b80d8
more than 1 instruction. The caller need to be aware of this
and adjust instruction iterators accordingly.
rdar://16679376
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207302 91177308-0d34-0410-b5e6-96231b3b80d8
Scaling factors are not free on X86 because every "complex" addressing mode
breaks the related instruction into 2 allocations instead of 1.
<rdar://problem/16730541>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207301 91177308-0d34-0410-b5e6-96231b3b80d8
a helper function. Also factor the other two places where we did the
same thing into the helper function. =] Much cleaner this way. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207300 91177308-0d34-0410-b5e6-96231b3b80d8
right intrinsics.
A packed logical shift right with a shift count bigger than or equal to the
element size always produces a zero vector. In all other cases, it can be
safely replaced by a 'lshr' instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207299 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If we're doing a v4f32/v4i32 shuffle on x86 with SSE4.1, we can lower
certain shufflevectors to an insertps instruction:
When most of the shufflevector result's elements come from one vector (and
keep their index), and one element comes from another vector or a memory
operand.
Added tests for insertps optimizations on shufflevector.
Added support and tests for v4i32 vector optimization.
Reviewers: nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3475
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207291 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, irreducible backedges were ignored. With this commit,
irreducible SCCs are discovered on the fly, and modelled as loops with
multiple headers.
This approximation specifies the headers of irreducible sub-SCCs as its
entry blocks and all nodes that are targets of a backedge within it
(excluding backedges within true sub-loops). Block frequency
calculations act as if we insert a new block that intercepts all the
edges to the headers. All backedges and entries to the irreducible SCC
point to this imaginary block. This imaginary block has an edge (with
even probability) to each header block.
The result is now reasonable enough that I've added a number of
testcases for irreducible control flow. I've outlined in
`BlockFrequencyInfoImpl.h` ways to improve the approximation.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207286 91177308-0d34-0410-b5e6-96231b3b80d8
This also avoids the need for subtly side-effecting calls to manifest
strings in the string table at the point where items are added to the
accelerator tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207281 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for an -mattr option to the gold plugin and to llvm-lto. This
allows the caller to specify details of the subtarget architecture, like +aes,
or +ssse3 on x86. Note that this requires a change to the include/llvm-c/lto.h
interface: it adds a function lto_codegen_set_attr and it increments the
version of the interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207279 91177308-0d34-0410-b5e6-96231b3b80d8
Pulls out some more code from some of the rather monolithic DWARF
classes. Unlike the address table, the string table won't move up into
DwarfDebug - each DWARF file has its own string table (but there can be
only one address table).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207277 91177308-0d34-0410-b5e6-96231b3b80d8
Consider this use from the new testcase:
LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i32
reg({1000,+,-1}<nw><%for.body>)
-3003 + reg({3,+,3}<nw><%for.body>)
-1001 + reg({1,+,1}<nuw><nsw><%for.body>)
-1000 + reg({0,+,1}<nw><%for.body>)
-3000 + reg({0,+,3}<nuw><%for.body>)
reg({-1000,+,1}<nw><%for.body>)
reg({-3000,+,3}<nsw><%for.body>)
This is the last use we consider for a solution in SolveRecurse, so CurRegs is
a large set. (CurRegs is the set of registers that are needed by the
previously visited uses in the in-progress solution.)
ReqRegs is {
{3,+,3}<nw><%for.body>,
{1,+,1}<nuw><nsw><%for.body>
}
This is the intersection of the regs used by any of the formulas for the
current use and CurRegs.
Now, the code requires a formula to contain *all* these regs (the comment is
simply wrong), otherwise the formula is immediately disqualified. Obviously,
no formula for this use contains two regs so they will all get disqualified.
The fix modifies the check to allow the formula in this case. The idea is
that neither of these formulae is introducing any new registers which is the
point of this early pruning as far as I understand.
In terms of set arithmetic, we now allow formulas whose used regs are a subset
of the required regs not just the other way around.
There are few more loops in the test-suite that are now successfully LSRed. I
have benchmarked those and found very minimal change.
Fixes <rdar://problem/13965777>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207271 91177308-0d34-0410-b5e6-96231b3b80d8
Actually use the `reference` typedef, and remove the private
redefinition of `pointer` since it has no users.
Using `reference` exposes a problem with r207257, which specified the
wrong `value_type` to `iterator_facade_base` (fixed that too).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207270 91177308-0d34-0410-b5e6-96231b3b80d8
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207269 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Kostya Serebryany.
unique_ptr would be nice, but it's a bit too much work for an area I'm
not familiar with, nor invested in, unfortunately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207265 91177308-0d34-0410-b5e6-96231b3b80d8
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207263 91177308-0d34-0410-b5e6-96231b3b80d8
Makes some more cases (the unit tests, specifically), lexically
compatible with a change to unique_ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207261 91177308-0d34-0410-b5e6-96231b3b80d8
Since this doesn't return ownership (the DIE has been added to the
specified parent already) nor return null, just return by reference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207259 91177308-0d34-0410-b5e6-96231b3b80d8
Move a lot of the loop-related logic that was sprinkled around the code
into `LoopData`.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207258 91177308-0d34-0410-b5e6-96231b3b80d8
Use the fancy new `iterator_facade_base` to add
`scc_iterator::operator->()`. Remove other definitions where
`iterator_facade_base` does the right thing.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207257 91177308-0d34-0410-b5e6-96231b3b80d8
This'll make changing to unique_ptr ownership of DIEs easier since the
usages will now have '*' on them making them textually compatible
between unique_ptr and raw pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207253 91177308-0d34-0410-b5e6-96231b3b80d8
It's fishy to be changing the `std::vector<>` owned by the iterator, and
no one actual does it, so I'm going to remove the ability in a
subsequent commit. First, update the users.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207252 91177308-0d34-0410-b5e6-96231b3b80d8
These are long functions that really shouldn't be inlined. Otherwise,
no functionality change.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207249 91177308-0d34-0410-b5e6-96231b3b80d8
Functions declared in line in a class are inlined by default. There's
no reason for the `inline` keyword.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207248 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is no longer needed with the new @llvm.arm.hint(i32) intrinsic
which provides a generic, extensible manner for adding hint instructions. This
functionality can now be represented as @llvm.arm.hint(i32 5).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207246 91177308-0d34-0410-b5e6-96231b3b80d8
override the default cold threshold.
When we use command line argument to set the inline threshold, the default
cold threshold will not be used. This is in line with how we use
OptSizeThreshold. When we want a higher threshold for all functions, we
do not have to set both inline threshold and cold threshold.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207245 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the llvm.arm.hint(i32) intrinsic that can be used to inject hints into
the instruction stream. This is particularly useful for generating IR from a
compiler where the user may inject an intrinsic (e.g. __yield). These are then
pattern substituted into the correct instruction which already existed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207242 91177308-0d34-0410-b5e6-96231b3b80d8
Debug info: Let dbg.values inserted by LowerDbgDeclare inherit the location
of the dbg.value. This gets rid of tons of redundant variable DIEs in
subscopes.
rdar://problem/14874886, rdar://problem/16679936
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207236 91177308-0d34-0410-b5e6-96231b3b80d8
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207235 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need for local symbols to go through the GOT, in fact it seems GNU ld is not even emitting GOT entries for local symbols and will error out when trying to resolve a GOT relocation for a local symbol.
This bug triggers when bootstrapping clang on AArch64 Linux with -fPIC and the ARM64 backend. The AArch64 backend is not affected.
With this commit it's now possible to bootstrap clang on AArch64 Linux with the ARM64 backend (-fPIC, -O3).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207226 91177308-0d34-0410-b5e6-96231b3b80d8