is narrower than the shift register. Doing an anyext provides undefined bits in
the top part of the register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125457 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a FIXME in scev-aa.ll (allowing a new no-alias result) and
generally makes things more precise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125449 91177308-0d34-0410-b5e6-96231b3b80d8
These are just FXSAVE and FXRSTOR with REX.W prefixes. These versions use
64-bit pointer values instead of 32-bit pointer values in the memory map they
dump and restore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125446 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner created illegal BUILD_VECTOR operations.
The patch added a check that either illegal operations are
allowed or that the created operation is legal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125435 91177308-0d34-0410-b5e6-96231b3b80d8
Teach the AsmMatcher handling to distinguish between an error custom-parsing
an operand and a failure to match. The former should propogate the error
upwards, while the latter should continue attempting to parse with
alternative matchers.
Update the ARM asm parser accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125426 91177308-0d34-0410-b5e6-96231b3b80d8
unsigned overflow (e.g. "gep P, -1"), and while they can have
signed wrap in theoretical situations, modelling an AddRec as
not having signed wrap is going enough for any case we can
think of today. In the future if this isn't enough, we can
revisit this. Modeling them as having NUW isn't causing any
known problems either FWIW.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125410 91177308-0d34-0410-b5e6-96231b3b80d8
unsigned overflow (e.g. due to a negative array index), but
the scales on array size multiplications are known to not
sign wrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125409 91177308-0d34-0410-b5e6-96231b3b80d8
The bug happens when the DAGCombiner attempts to optimize one of the patterns
of the SUB opcode. It tries to create a zero of type v2i64. This type is legal
on 32bit machines, but the initializer of this vector (i64) is target dependent.
Currently, the initializer attempts to create an i64 zero constant, which fails.
Added a flag to tell the DAGCombiner to create a legal zero, if we require that
the pass would generate legal types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125391 91177308-0d34-0410-b5e6-96231b3b80d8
objects, since they'll end up using the implicit conversion to "bool"
and causing some very "fun" surprises.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125380 91177308-0d34-0410-b5e6-96231b3b80d8
a loop when unswitching it. It only does this in the complex case, because
everything should be fine already in the simple case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125369 91177308-0d34-0410-b5e6-96231b3b80d8
This
define float @foo(float %x, float %y) nounwind readnone {
entry:
%0 = tail call float @copysignf(float %x, float %y) nounwind readnone
ret float %0
}
Was compiled to:
vmov s0, r1
bic r0, r0, #-2147483648
vmov s1, r0
vcmpe.f32 s0, #0
vmrs apsr_nzcv, fpscr
it lt
vneglt.f32 s1, s1
vmov r0, s1
bx lr
This fails to copy the sign of -0.0f because it's lost during the float to int
conversion. Also, it's sub-optimal when the inputs are in GPR registers.
Now it uses integer and + or operations when it's profitable. And it's correct!
lsrs r1, r1, #31
bfi r0, r1, #31, #1
bx lr
rdar://8984306
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125357 91177308-0d34-0410-b5e6-96231b3b80d8