case when the lookup table doesn't have any holes.
This means we can build a lookup table for switches like this:
switch (x) {
case 0: return 1;
case 1: return 2;
case 2: return 3;
case 3: return 4;
default: exit(1);
}
The default case doesn't yield a constant result here, but that doesn't matter,
since a default result is only necessary for filling holes in the lookup table,
and this table doesn't have any holes.
This makes us transform 505 more switches in a clang bootstrap, and shaves 164 KB
off the resulting clang binary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199025 91177308-0d34-0410-b5e6-96231b3b80d8
1- Use the line_iterator class to read profile files.
2- Allow comments in profile file. Lines starting with '#'
are completely ignored while reading the profile.
3- Add parsing support for discriminators and indirect call samples.
Our external profiler can emit more profile information that we are
currently not handling. This patch does not add new functionality to
support this information, but it allows profile files to provide it.
I will add actual support later on (for at least one of these
features, I need support for DWARF discriminators in Clang).
A sample line may contain the following additional information:
Discriminator. This is used if the sampled program was compiled with
DWARF discriminator support
(http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). This
is currently only emitted by GCC and we just ignore it.
Potential call targets and samples. If present, this line contains a
call instruction. This models both direct and indirect calls. Each
called target is listed together with the number of samples. For
example,
130: 7 foo:3 bar:2 baz:7
The above means that at relative line offset 130 there is a call
instruction that calls one of foo(), bar() and baz(). With baz()
being the relatively more frequent call target.
Differential Revision: http://llvm-reviews.chandlerc.com/D2355
4- Simplify format of profile input file.
This implements earlier suggestions to simplify the format of the
sample profile file. The symbol table is not necessary and function
profiles do not need to know the number of samples in advance.
Differential Revision: http://llvm-reviews.chandlerc.com/D2419
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198973 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a propagation heuristic to convert instruction samples
into branch weights. It implements a similar heuristic to the one
implemented by Dehao Chen on GCC.
The propagation proceeds in 3 phases:
1- Assignment of block weights. All the basic blocks in the function
are initial assigned the same weight as their most frequently
executed instruction.
2- Creation of equivalence classes. Since samples may be missing from
blocks, we can fill in the gaps by setting the weights of all the
blocks in the same equivalence class to the same weight. To compute
the concept of equivalence, we use dominance and loop information.
Two blocks B1 and B2 are in the same equivalence class if B1
dominates B2, B2 post-dominates B1 and both are in the same loop.
3- Propagation of block weights into edges. This uses a simple
propagation heuristic. The following rules are applied to every
block B in the CFG:
- If B has a single predecessor/successor, then the weight
of that edge is the weight of the block.
- If all the edges are known except one, and the weight of the
block is already known, the weight of the unknown edge will
be the weight of the block minus the sum of all the known
edges. If the sum of all the known edges is larger than B's weight,
we set the unknown edge weight to zero.
- If there is a self-referential edge, and the weight of the block is
known, the weight for that edge is set to the weight of the block
minus the weight of the other incoming edges to that block (if
known).
Since this propagation is not guaranteed to finalize for every CFG, we
only allow it to proceed for a limited number of iterations (controlled
by -sample-profile-max-propagate-iterations). It currently uses the same
GCC default of 100.
Before propagation starts, the pass builds (for each block) a list of
unique predecessors and successors. This is necessary to handle
identical edges in multiway branches. Since we visit all blocks and all
edges of the CFG, it is cleaner to build these lists once at the start
of the pass.
Finally, the patch fixes the computation of relative line locations.
The profiler emits lines relative to the function header. To discover
it, we traverse the compilation unit looking for the subprogram
corresponding to the function. The line number of that subprogram is the
line where the function begins. That becomes line zero for all the
relative locations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198972 91177308-0d34-0410-b5e6-96231b3b80d8
for (i = 0; i < N; ++i)
A[i * Stride1] += B[i * Stride2];
We take loops like this and check that the symbolic strides 'Strided1/2' are one
and drop to the scalar loop if they are not.
This is currently disabled by default and hidden behind the flag
'enable-mem-access-versioning'.
radar://13075509
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198950 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't seem to have actually broken anything. It was paranoia
on my part. Trying again now that bots are more stable.
This is a follow up of the r198338 commit that added truncates for
lcssa phi nodes. Sinking the truncates below the phis cleans up the
loop and simplifies subsequent analysis within the indvars pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198678 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow up of the r198338 commit that added truncates for
lcssa phi nodes. Sinking the truncates below the phis cleans up the
loop and simplifies subsequent analysis within the indvars pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198654 91177308-0d34-0410-b5e6-96231b3b80d8
Now with a fix for PR18384: ValueHandleBase::ValueIsDeleted.
We need to invalidate SCEV's loop info when we delete a block, even if no values are hoisted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198631 91177308-0d34-0410-b5e6-96231b3b80d8
All other uses of this macro in LLVM/clang have been moved to the function
definition so follow suite (and the usage advice) here too for consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198516 91177308-0d34-0410-b5e6-96231b3b80d8
This commit was the source of crasher PR18384:
While deleting: label %for.cond127
An asserting value handle still pointed to this value!
UNREACHABLE executed at llvm/lib/IR/Value.cpp:671!
Reverting to get the builders green, feel free to re-land after fixing up.
(Renato has a handy isolated repro if you need it.)
This reverts commit r198478.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198503 91177308-0d34-0410-b5e6-96231b3b80d8
getSCEV for an ashr instruction creates an intermediate zext
expression when it truncates its operand.
The operand is initially inside the loop, so the narrow zext
expression has a non-loop-invariant loop disposition.
LoopSimplify then runs on an outer loop, hoists the ashr operand, and
properly invalidate the SCEVs that are mapped to value.
The SCEV expression for the ashr is now an AddRec with the hoisted
value as the now loop-invariant start value.
The LoopDisposition of this wide value was properly invalidated during
LoopSimplify.
However, if we later get the ashr SCEV again, we again try to create
the intermediate zext expression. We get the same SCEV that we did
earlier, and it is still cached because it was never mapped to a
Value. When we try to create a new AddRec we abort because we're using
the old non-loop-invariant LoopDisposition.
I don't have a solution for this other than to clear LoopDisposition
when LoopSimplify hoists things.
I think the long-term strategy should be to perform LoopSimplify on
all loops before computing SCEV and before running any loop opts on
individual loops. It's possible we may want to rerun LoopSimplify on
individual loops, but it should rarely do anything, so rarely require
invalidating SCEV.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198478 91177308-0d34-0410-b5e6-96231b3b80d8
The motivation is to mark dump methods as used in debug builds so that they can
be called from lldb, but to not do so in release builds so that they can be
dead-stripped.
There's lots of potential follow-up work suggested in the thread
"Should dump methods be LLVM_ATTRIBUTE_USED only in debug builds?" on cfe-dev,
but everyone seems to agreen on this subset.
Macro name chosen by fair coin toss.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198456 91177308-0d34-0410-b5e6-96231b3b80d8
The loop rerolling pass was failing with an assertion failure from a
failed cast on loops like this:
void foo(int *A, int *B, int m, int n) {
for (int i = m; i < n; i+=4) {
A[i+0] = B[i+0] * 4;
A[i+1] = B[i+1] * 4;
A[i+2] = B[i+2] * 4;
A[i+3] = B[i+3] * 4;
}
}
The code was casting the SCEV-expanded code for the new
induction variable to a phi-node. When the loop had a non-constant
lower bound, the SCEV expander would end the code expansion with an
add insted of a phi node and the cast would fail.
It looks like the cast to a phi node was only needed to get the
induction variable value coming from the backedge to compute the end
of loop condition. This patch changes the loop reroller to compare
the induction variable to the number of times the backedge is taken
instead of the iteration count of the loop. In other words, we stop
the loop when the current value of the induction variable ==
IterationCount-1. Previously, the comparison was comparing the
induction variable value from the next iteration == IterationCount.
This problem only seems to occur on 32-bit targets. For some reason,
the loop is not rerolled on 64-bit targets.
PR18290
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198425 91177308-0d34-0410-b5e6-96231b3b80d8
As noted in the comment above CodeGenPrepare::OptimizeInst, which aggressively
sinks compares to reduce pressure on the condition register(s), for targets
such as PowerPC with multiple condition registers, this may not be the right
thing to do. This adds an HasMultipleConditionRegisters boolean to TLI, and
CodeGenPrepare::OptimizeInst is skipped when HasMultipleConditionRegisters is
true.
This functionality will be used by the PowerPC backend in an upcoming commit.
Especially when the PowerPC backend starts tracking individual condition
register bits as separate allocatable entities (which will happen in this
upcoming commit), this sinking from CodeGenPrepare::OptimizeInst is
significantly suboptimial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198354 91177308-0d34-0410-b5e6-96231b3b80d8
When widening an IV to remove s/zext, we generally try to eliminate
the original narrow IV. However, LCSSA phi nodes outside the loop were
still using the original IV. Clean this up more aggressively to avoid
redundancy in generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198338 91177308-0d34-0410-b5e6-96231b3b80d8
(unittests/ExecutionEngine/JIT/CMakeLists.txt is still missing for now, since
it handles export files in a strange way: It generates a .exports file from a
.def file instead of the other way round.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198183 91177308-0d34-0410-b5e6-96231b3b80d8
Split sadd.with.overflow into add + sadd.with.overflow to allow
analysis and optimization. This should ideally be done after
InstCombine, which can perform code motion (eventually indvars should
run after all canonical instcombines). We want ISEL to recombine the
add and the check, at least on x86.
This is currently under an option for reducing live induction
variables: -liv-reduce. The next step is reducing liveness of IVs that
are live out of the overflow check paths. Once the related
optimizations are fully developed, reviewed and tested, I do expect
this to become default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197926 91177308-0d34-0410-b5e6-96231b3b80d8
If the Scalarizer scalarized a vector PHI but could not scalarize
all uses of it, it would insert a series of insertelements to reconstruct
the vector PHI value from the scalar ones. The problem was that it would
emit these insertelements immediately after the PHI, even if there were
other PHIs after it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197909 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before this change the instrumented code before Ret instructions looked like:
<Unpoison Frame Redzones>
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
Now the instrumented code looks like:
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
else
<Unpoison Frame Redzones>
Reviewers: eugenis
Reviewed By: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197907 91177308-0d34-0410-b5e6-96231b3b80d8
If we happen to eliminate every case in a switch that has branch
weights, we currently try to create metadata for the one remaining
branch, triggering an assert. Instead, we need to check that the
metadata we're trying to create is sensible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197791 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the case of arithmetic shift right - do not attempt to fold that case.
This change also relaxes the conditions when attempting to fold the logical shift right and shift left cases.
No additional IR-level test cases included at this time. See http://llvm.org/bugs/show_bug.cgi?id=17827 for proofs that these are correct transformations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197705 91177308-0d34-0410-b5e6-96231b3b80d8
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197677 91177308-0d34-0410-b5e6-96231b3b80d8
A phi node operand or an instruction operand could be a constant expression that
can trap (division). Check that we don't vectorize such cases.
PR16729
radar://15653590
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197449 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalOpt's CleanupConstantGlobalUsers function uses a worklist array to manage
constant users to be visited. The pointers in this array need to be weak
handles because when we delete a constant array, we may also be holding a
pointer to one of its elements (or an element of one of its elements if we're
dealing with an array of arrays) in the worklist.
Fixes PR17347.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197178 91177308-0d34-0410-b5e6-96231b3b80d8
The barrier pass is a temporary hack, and should go away soon. Nevertheless, if
we don't initialize it, then opt will not understand -barrier, and this will
break bugpoint (because when it dumps the passes from the default pass manager
-barrier will be there).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197177 91177308-0d34-0410-b5e6-96231b3b80d8
It was failing because ASan was adding all of the following to one
function:
- dynamic alloca
- stack realignment
- inline asm
This patch avoids making the static alloca dynamic when coverage is
used.
ASan should probably not be inserting empty inline asm blobs to inhibit
duplicate tail elimination.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196973 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids creating branch weight metadata of length one when we fold
cases into the default of a switch instruction, which was triggering
an assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196845 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR17872. This bug can lead to C++ destructors not being
called when they should be, when an exception is thrown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196711 91177308-0d34-0410-b5e6-96231b3b80d8
Before this change, inlining one "invoke" into an outer "invoke" call
site can lead to the outer landingpad's catch/filter clauses being
copied multiple times into the resulting landingpad. This happens:
* when the inlined function contains multiple "resume" instructions,
because forwardResume() copies the clauses but is called multiple
times;
* when the inlined function contains a "resume" and a "call", because
HandleCallsInBlockInlinedThroughInvoke() copies the clauses but is
redundant with forwardResume().
Fix this by deduplicating the code.
This problem doesn't lead to any incorrect execution; it's only
untidy.
This change will make fixing PR17872 a little easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196710 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196568 91177308-0d34-0410-b5e6-96231b3b80d8
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.
This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.
The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.
Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196537 91177308-0d34-0410-b5e6-96231b3b80d8
There is no reason to use std::deque here over std::vector. Thus given the
performance differences inbetween the two it makes sense to change deque to
vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196524 91177308-0d34-0410-b5e6-96231b3b80d8
We use CSEBlocks to initialize a worklist:
SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
so it must have a deterministic order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196520 91177308-0d34-0410-b5e6-96231b3b80d8
We were creating external uses for scalar values in MustGather entries that also
had a ScalarToTreeEntry (they also are present in a vectorized tuple). This
meant we would keep a value 'alive' as a scalar and vectorized causing havoc.
This is not necessary because when we create a MustGather vector we explicitly
create external uses entries for the insertelement instructions of the
MustGather vector elements.
Fixes PR18129.
radar://15582184
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196508 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
This currently breaks clang/test/CodeGen/code-coverage.c. The root cause
is that the newly introduced access to Funcs[j] is out of bounds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196365 91177308-0d34-0410-b5e6-96231b3b80d8
may be removed and optimized in future iterations. Instead we save a list of basic blocks that we need to CSE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195791 91177308-0d34-0410-b5e6-96231b3b80d8
In signed arithmetic we could end up with an i64 trip count for an i32 phi.
Because it is signed arithmetic we know that this is only defined if the i32
does not wrap. It is therefore safe to truncate the i64 trip count to a i32
value.
Fixes PR18049.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195787 91177308-0d34-0410-b5e6-96231b3b80d8
I'm adding new functionality in the sample profiler. This will
require more data to be kept around for each function, so I moved
the structure SampleProfile that we keep for each function into
a separate class.
There are no functional changes in this patch. It simply provides
a new home where to place all the new data that I need to propagate
weights through edges.
There are some other name and minor edits throughout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195780 91177308-0d34-0410-b5e6-96231b3b80d8
we generate PHI nodes with multiple entries from the same basic block but
with different values. Enabling CSE on ExtractElement instructions make sure
that all of the RAUWed instructions are the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195773 91177308-0d34-0410-b5e6-96231b3b80d8
Short description.
This issue is about case of treating pointers as integers.
We treat pointers as different if they references different address space.
At the same time, we treat pointers equal to integers (with machine address
width). It was a point of false-positive. Consider next case on 32bit machine:
void foo0(i32 addrespace(1)* %p)
void foo1(i32 addrespace(2)* %p)
void foo2(i32 %p)
foo0 != foo1, while
foo1 == foo2 and foo0 == foo2.
As you can see it breaks transitivity. That means that result depends on order
of how functions are presented in module. Next order causes merging of foo0
and foo1: foo2, foo0, foo1
First foo0 will be merged with foo2, foo0 will be erased. Second foo1 will be
merged with foo2.
Depending on order, things could be merged we don't expect to.
The fix:
Forbid to treat any pointer as integer, except for those, who belong to address space 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195769 91177308-0d34-0410-b5e6-96231b3b80d8
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195722 91177308-0d34-0410-b5e6-96231b3b80d8
SLP vectorization. Based on the code in BBVectorizer.
Fixes PR17741.
Patch by Raul Silvera, reviewed by Hal and Nadav. Reformatted by my
driving of clang-format. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195528 91177308-0d34-0410-b5e6-96231b3b80d8
gcov expects every function to contain an entry block that
unconditionally branches into the next block. clang does not implement
basic blocks in this manner, so gcov did not output correct branch info
if the entry block branched to multiple blocks.
This change splits every function's entry block into an empty block and
a block with the rest of the instructions. The instrumentation code will
take care of the rest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195513 91177308-0d34-0410-b5e6-96231b3b80d8
We can share the implementation between StripSymbols and dropping debug info
for metadata versions that do not match.
Also update the comments to match the implementation. A follow-on patch will
drop the "Debug Info Version" module flag in StripDebugInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195505 91177308-0d34-0410-b5e6-96231b3b80d8
If the beginning of the loop was also the entry block
of the function, branches were inserted to the entry block
which isn't allowed. If this occurs, create a new dummy
function entry block that branches to the start of the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195493 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is simply to use CurI instead of I when handling aliases to
avoid accessing a invalid iterator.
original message:
Convert linkonce* to weak* instead of strong.
Also refactor the logic into a helper function. This is an important improve
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195477 91177308-0d34-0410-b5e6-96231b3b80d8
Also refactor the logic into a helper function. This is an important improvement
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195470 91177308-0d34-0410-b5e6-96231b3b80d8
The new command line flags are -dfsan-ignore-pointer-label-on-store and -dfsan-ignore-pointer-label-on-load. Their default value matches the current labelling scheme.
Additionally, the function __dfsan_union_load is marked as readonly.
Patch by Lorenzo Martignoni!
Differential Revision: http://llvm-reviews.chandlerc.com/D2187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195382 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of permanently outputting "MVLL" as the file checksum, clang
will create gcno and gcda checksums by hashing the destination block
numbers of every arc. This allows for llvm-cov to check if the two gcov
files are synchronized.
Regenerated the test files so they contain the checksum. Also added
negative test to ensure error when the checksums don't match.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195191 91177308-0d34-0410-b5e6-96231b3b80d8
We are slicing an array of Value pointers and process those slices in a loop.
The problem is that we might invalidate a later slice by vectorizing a former
slice.
Use a WeakVH to track the pointer. If the pointer is deleted or RAUW'ed we can
tell.
The test case will only fail when running with libgmalloc.
radar://15498655
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195162 91177308-0d34-0410-b5e6-96231b3b80d8
order of slices of the alloca which have exactly the same size and other
properties. This was found by a perniciously unstable sort
implementation used to flush out buggy uses of the algorithm.
The fundamental idea is that findCommonType should return the best
common type it can find across all of the slices in the range. There
were two bugs here previously:
1) We would accept an integer type smaller than a byte-width multiple,
and if there were different bit-width integer types, we would accept
the first one. This caused an actual failure in the testcase updated
here when the sort order changed.
2) If we found a bad combination of types or a non-load, non-store use
before an integer typed load or store we would bail, but if we found
the integere typed load or store, we would use it. The correct
behavior is to always use an integer typed operation which covers the
partition if one exists.
While a clever debugging sort algorithm found problem #1 in our existing
test cases, I have no useful test case ideas for #2. I spotted in by
inspection when looking at this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195118 91177308-0d34-0410-b5e6-96231b3b80d8
lowering only for load/stores to scalar allocas. The resulting values
confuse the backend and don't add anything because we can describe
array-allocas with a dbg.declare intrinsic just fine.
rdar://problem/15464571
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195052 91177308-0d34-0410-b5e6-96231b3b80d8
In some case the loop exit count computation can overflow. Extend the type to
prevent most of those cases.
The problem is loops like:
int main ()
{
int a = 1;
char b = 0;
lbl:
a &= 4;
b--;
if (b) goto lbl;
return a;
}
The backedge count is 255. The induction variable type is i8. If we add one to
255 to get the exit count we overflow to zero.
To work around this issue we extend the type of the induction variable to i32 in
the case of i8 and i16.
PR17532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195008 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a boolean member variable to the PassManagerBuilder to control loop
rerolling (just like we have for unrolling and the various vectorization
options). This is necessary for control by the frontend. Loop rerolling remains
disabled by default at all optimization levels.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194966 91177308-0d34-0410-b5e6-96231b3b80d8
Generally speaking, control flow paths with error reporting calls are cold.
So far, error reporting calls are calls to perror and calls to fprintf,
fwrite, etc. with stderr as the stream. This can be extended in the future.
The primary motivation is to improve block placement (the cold attribute
affects the static branch prediction heuristics).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194943 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:
for (int i = 0; i < 3200; i += 5) {
a[i] += alpha * b[i];
a[i + 1] += alpha * b[i + 1];
a[i + 2] += alpha * b[i + 2];
a[i + 3] += alpha * b[i + 3];
a[i + 4] += alpha * b[i + 4];
}
and turn them into this:
for (int i = 0; i < 3200; ++i) {
a[i] += alpha * b[i];
}
and loops like this:
for (int i = 0; i < 500; ++i) {
x[3*i] = foo(0);
x[3*i+1] = foo(0);
x[3*i+2] = foo(0);
}
and turn them into this:
for (int i = 0; i < 1500; ++i) {
x[i] = foo(0);
}
There are two motivations for this transformation:
1. Code-size reduction (especially relevant, obviously, when compiling for
code size).
2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.
The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.
This pass is not currently enabled by default at any optimization level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194939 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombine, in visitFPTrunc, applies the following optimization to sqrt calls:
(fptrunc (sqrt (fpext x))) -> (sqrtf x)
but does not apply the same optimization to llvm.sqrt. This is a problem
because, to enable vectorization, Clang generates llvm.sqrt instead of sqrt in
fast-math mode, and because this optimization is being applied to sqrt and not
applied to llvm.sqrt, sometimes the fast-math code is slower.
This change makes InstCombine apply this optimization to llvm.sqrt as well.
This fixes the specific problem in PR17758, although the same underlying issue
(optimizations applied to libcalls are not applied to intrinsics) exists for
other optimizations in SimplifyLibCalls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194935 91177308-0d34-0410-b5e6-96231b3b80d8
When we vectorize a scalar access with no alignment specified, we have to set
the target's abi alignment of the scalar access on the vectorized access.
Using the same alignment of zero would be wrong because most targets will have a
bigger abi alignment for vector types.
This probably fixes PR17878.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194876 91177308-0d34-0410-b5e6-96231b3b80d8
We used to use std::map<IndicesVector, LoadInst*> for OriginalLoads, and when we
try to promote two arguments, they will both write to OriginalLoads causing
created loads for the two arguments to have the same original load. And the same
tbaa tag and alignment will be put to the created loads for the two arguments.
The fix is to use std::map<std::pair<Argument*, IndicesVector>, LoadInst*>
for OriginalLoads, so each Argument will write to different parts of the map.
PR17906
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194846 91177308-0d34-0410-b5e6-96231b3b80d8
I was able to successfully run a bootstrapped LTO build of clang with
r194701, so this change does not seem to be the cause of our failing
buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194789 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 194701. Apple's bootstrapped LTO builds have been failing,
and this change (along with compiler-rt 194702-194704) is the only thing on
the blamelist. I will either reappy these changes or help debug the problem,
depending on whether this fixes the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194780 91177308-0d34-0410-b5e6-96231b3b80d8
Indirect call wrapping helps MSanDR (dynamic instrumentation companion tool
for MSan) to catch all cases where execution leaves a compiler-instrumented
module by allowing the tool to rewrite targets of indirect calls.
This change is an optimization that skips wrapping for calls when target is
inside the current module. This relies on the linker providing symbols at the
begin and end of the module code (or code + data, does not really matter).
Gold linker provides such symbols by default. GNU (BFD) linker needs a link
flag: -Wl,--defsym=__executable_start=0.
More info:
https://code.google.com/p/memory-sanitizer/wiki/MSanDR#Native_exec
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194697 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new scalar pass that reads a file with samples generated
by 'perf' during runtime. The samples read from the profile are
incorporated and emmited as IR metadata reflecting that profile.
The profile file is assumed to have been generated by an external
profile source. The profile information is converted into IR metadata,
which is later used by the analysis routines to estimate block
frequencies, edge weights and other related data.
External profile information files have no fixed format, each profiler
is free to define its own. This includes both the on-disk representation
of the profile and the kind of profile information stored in the file.
A common kind of profile is based on sampling (e.g., perf), which
essentially counts how many times each line of the program has been
executed during the run.
The SampleProfileLoader pass is organized as a scalar transformation.
On startup, it reads the file given in -sample-profile-file to
determine what kind of profile it contains. This file is assumed to
contain profile information for the whole application. The profile
data in the file is read and incorporated into the internal state of
the corresponding profiler.
To facilitate testing, I've organized the profilers to support two file
formats: text and native. The native format is whatever on-disk
representation the profiler wants to support, I think this will mostly
be bitcode files, but it could be anything the profiler wants to
support. To do this, every profiler must implement the
SampleProfile::loadNative() function.
The text format is mostly meant for debugging. Records are separated by
newlines, but each profiler is free to interpret records as it sees fit.
Profilers must implement the SampleProfile::loadText() function.
Finally, the pass will call SampleProfile::emitAnnotations() for each
function in the current translation unit. This function needs to
translate the loaded profile into IR metadata, which the analyzer will
later be able to use.
This patch implements the first steps towards the above design. I've
implemented a sample-based flat profiler. The format of the profile is
fairly simplistic. Each sampled function contains a list of relative
line locations (from the start of the function) together with a count
representing how many samples were collected at that line during
execution. I generate this profile using perf and a separate converter
tool.
Currently, I have only implemented a text format for these profiles. I
am interested in initial feedback to the whole approach before I send
the other parts of the implementation for review.
This patch implements:
- The SampleProfileLoader pass.
- The base ExternalProfile class with the core interface.
- A SampleProfile sub-class using the above interface. The profiler
generates branch weight metadata on every branch instructions that
matches the profiles.
- A text loader class to assist the implementation of
SampleProfile::loadText().
- Basic unit tests for the pass.
Additionally, the patch uses profile information to compute branch
weights based on instruction samples.
This patch converts instruction samples into branch weights. It
does a fairly simplistic conversion:
Given a multi-way branch instruction, it calculates the weight of
each branch based on the maximum sample count gathered from each
target basic block.
Note that this assignment of branch weights is somewhat lossy and can be
misleading. If a basic block has more than one incoming branch, all the
incoming branches will get the same weight. In reality, it may be that
only one of them is the most heavily taken branch.
I will adjust this assignment in subsequent patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194566 91177308-0d34-0410-b5e6-96231b3b80d8
Constant merge can merge a constant with implicit alignment with one that has
explicit alignment. Before this change it was assuming that the explicit
alignment was higher than the implicit one, causing the result to be under
aligned in some cases.
Fixes pr17815.
Patch by Chris Smowton!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194506 91177308-0d34-0410-b5e6-96231b3b80d8
The symptom is that an assertion is triggered. The assertion was added by
me to detect the situation when value is propagated from dead blocks.
(We can certainly get rid of assertion; it is safe to do so, because propagating
value from dead block to alive join node is certainly ok.)
The root cause of this bug is : edge-splitting is conducted on the fly,
the edge being split could be a dead edge, therefore the block that
split the critial edge needs to be flagged "dead" as well.
There are 3 ways to fix this bug:
1) Get rid of the assertion as I mentioned eariler
2) When an dead edge is split, flag the inserted block "dead".
3) proactively split the critical edges connecting dead and live blocks when
new dead blocks are revealed.
This fix go for 3) with additional 2 LOC.
Testing case was added by Rafael the other day.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194424 91177308-0d34-0410-b5e6-96231b3b80d8
LoopUnswitch's code simplification routine has logic to convert conditional
branches into unconditional branches, after unswitching makes the condition
constant, and then remove any blocks that renders dead. Unfortunately, this
code is dead, currently broken, and furthermore, has never been alive (at least
as far back at 2006).
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194277 91177308-0d34-0410-b5e6-96231b3b80d8
Due to the previously added overflow checks, we can have a retain/release
relation that is one directional. This occurs specifically when we run into an
additive overflow causing us to drop state in only one direction. If that
occurs, we should bail and not optimize that retain/release instead of
asserting.
Apologies for the size of the testcase. It is necessary to cause the additive
cfg overflow to trigger.
rdar://15377890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194083 91177308-0d34-0410-b5e6-96231b3b80d8
As with the other loop unrolling parameters (the unrolling threshold, partial
unrolling, etc.) runtime unrolling can now also be controlled via the
constructor. This will be necessary for moving non-trivial unrolling late in
the pass manager (after loop vectorization).
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194027 91177308-0d34-0410-b5e6-96231b3b80d8
When the elements are extracted from a select on vectors
or a vector select, do the select on the extracted scalars
from the input if there is only one use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194013 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of doing a RPO traversal of the whole function remember the blocks
containing gathers (typically <= 2) and scan them in dominator-first order.
The actual CSE is still quadratic, but I'm not confident that adding a
scoped hash table here is worth it as we're only looking at the generated
instructions and not arbitrary code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193956 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r193356, it caused PR17781.
A reduced test case covering this regression has been added to the test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193955 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an SimplifyLibCalls case which converts the special __sinpi and
__cospi (float & double variants) into a __sincospi_stret where appropriate to
remove duplicated work.
Patch by Tim Northover
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193943 91177308-0d34-0410-b5e6-96231b3b80d8
Doing this with a hash map doesn't change behavior and avoids calling
isIdenticalTo O(n^2) times. This should probably eventually move into a utility
class shared with EarlyCSE and the limited CSE in the SLPVectorizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193926 91177308-0d34-0410-b5e6-96231b3b80d8
When the loop vectorizer was part of the SCC inliner pass manager gvn would
run after the loop vectorizer followed by instcombine. This way redundancy
(multiple uses) were removed and instcombine could perform scalarization on the
induction variables. Having moved the loop vectorizer to later we no longer run
any form of redundancy elimination before we perform instcombine. This caused
vectorized induction variables to survive that did not before.
On a recent iMac this helps linpack back from 6000Mflops to 7000Mflops.
This should also help lpbench and paq8p.
I ran a Release (without Asserts) build over the test-suite and did not see any
negative impact on compile time.
radar://15339680
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193891 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a pointer to a single-element struct we can still build wide loads
and stores to it (if there is no padding).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193860 91177308-0d34-0410-b5e6-96231b3b80d8
When a dependence check fails we can still try to vectorize loops with runtime
array bounds checks.
This helps linpack to vectorize a loop in dgefa. And we are back to 2x of the
scalar performance on a corei7-avx.
radar://15339680
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193853 91177308-0d34-0410-b5e6-96231b3b80d8
Clear all data structures when resetting the RuntimeCheck data structure.
No test case. This was exposed by an upcomming change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193852 91177308-0d34-0410-b5e6-96231b3b80d8
Given that backend does not handle "invoke asm" correctly ("invoke asm" will be
handled by SelectionDAGBuilder::visitInlineAsm, which does not have the right
setup for LPadToCallSiteMap) and we already made the assumption that inline asm
does not throw in InstCombiner::visitCallSite, we are going to make the same
assumption in Inliner to make sure we don't convert "call asm" to "invoke asm".
If it becomes necessary to add support for "invoke asm" later on, we will need
to modify the backend as well as remove the assumptions that inline asm does
not throw.
Fix rdar://15317907
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193808 91177308-0d34-0410-b5e6-96231b3b80d8
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193800 91177308-0d34-0410-b5e6-96231b3b80d8
By vectorizing a series of srl, or, ... instructions we have obfuscated the
intention so much that the backend does not know how to fold this code away.
radar://15336950
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193573 91177308-0d34-0410-b5e6-96231b3b80d8
No test case, because with the current cost model we don't see a difference.
An upcoming ARM memory cost model change will expose and test this bug.
radar://15332579
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193572 91177308-0d34-0410-b5e6-96231b3b80d8
Partial fix for PR17459: wrong code at -O3 on x86_64-linux-gnu
(affecting trunk and 3.3)
When SCEV expands a recurrence outside of a loop it attempts to scale
by the stride of the recurrence. Chained recurrences don't work that
way. We could compute binomial coefficients, but would hve to
guarantee that the chained AddRec's are in a perfectly reduced form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193438 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches GlobalStatus to analyze a call that uses the global value as
a callee, not as an argument.
With this change internalize call handle the common use of linkonce_odr
functions. This reduces the number of linkonce_odr functions in a LTO build of
clang (checked with the emit-llvm gold plugin option) from 1730 to 60.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193436 91177308-0d34-0410-b5e6-96231b3b80d8
The loop vectorizer does not currently understand how to vectorize
extractelement instructions. The existing check, which excluded all
vector-valued instructions, did not catch extractelement instructions because
it checked only the return value. As a result, vectorization would proceed,
producing illegal instructions like this:
%58 = extractelement <2 x i32> %15, i32 0
%59 = extractelement i32 %58, i32 0
where the second extractelement is illegal because its first operand is not a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193434 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure we mark all loops (scalar and vector) when vectorizing,
so that we don't try to vectorize them anymore. Also, set unroll
to 1, since this is what we check for on early exit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193349 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM optimizers may widen accesses to packed structures that overflow the structure itself, but should be in bounds up to the alignment of the object
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193317 91177308-0d34-0410-b5e6-96231b3b80d8
Major steps include:
1). introduces a not-addr-taken bit-field in GlobalVariable
2). GlobalOpt pass sets "not-address-taken" if it proves a global varirable
dosen't have its address taken.
3). AA use this info for disambiguation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193251 91177308-0d34-0410-b5e6-96231b3b80d8
When a linkonce_odr value that is on the dso list is not unnamed_addr
we can still look to see if anything is actually using its address. If
not, it is safe to hide it.
This patch implements that by moving GlobalStatus to Transforms/Utils
and using it in Internalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193090 91177308-0d34-0410-b5e6-96231b3b80d8
A landing pad can be jumped to only by the unwind edge of an invoke
instruction. If we eliminate a partially redundant load in a landing pad, it
will create a basic block that violates this constraint. It then leads to other
problems down the line if it tries to merge that basic block with the landing
pad. Avoid this by not eliminating the load in a landing pad.
PR17621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193064 91177308-0d34-0410-b5e6-96231b3b80d8
One optimization simplify-cfg performs is the converting of switches to
lookup tables if the switch has > 4 cases. This is done by:
1. Finding the max/min case value and calculating the switch case range.
2. Create a lookup table basic block.
3. Perform a check in the switch's BB to see if the input value is in
the switch's case range. If the input value satisfies said predicate
branch to the lookup table BB, otherwise branch to the switch's default
destination BB using the default value as the result.
The conditional check consists of subtracting the min case value of the
table from any input iN value and then ensuring that said value is
unsigned less than the size of the lookup table represented as an iN
value.
If the lookup table is a covered lookup table, the size of the table will be N
which is 0 as an iN value. Thus the comparison will be an `icmp ult` of an iN
value against 0 which is always false yielding the incorrect result.
This patch fixes this problem by recognizing if we have a covered lookup table
and if we do, unconditionally jumps to the lookup table BB since the covering
property of the lookup table implies no input values could not be handled by
said BB.
rdar://15268442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193045 91177308-0d34-0410-b5e6-96231b3b80d8
If the predecessor's being spliced into a landing pad, then we need the PHIs to
come first and the rest of the predecessor's code to come *after* the landing
pad instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193035 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Given a global array G[N], which is declared in this CU and has static initializer
avoid instrumenting accesses like G[i], where 'i' is a constant and 0<=i<N.
Also add a bit of stats.
This eliminates ~1% of instrumentations on SPEC2006
and also partially helps when asan is being run together with coverage.
Reviewers: samsonov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1947
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192794 91177308-0d34-0410-b5e6-96231b3b80d8
Currently MSan checks that arguments of *cvt* intrinsics are fully initialized.
That's too much to ask: some of them only operate on lower half, or even
quarter, of the input register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192599 91177308-0d34-0410-b5e6-96231b3b80d8