just count references to it from JIT output to decide when to destroy it. This
patch waits to destroy the JIT's memory of a stub until the Function it refers
to is destroyed. External function stubs and GVIndirectSyms aren't destroyed
until the JIT itself is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97737 91177308-0d34-0410-b5e6-96231b3b80d8
Instruction (PLI) for disassembly only.
According to A8.6.120 PLI (immediate, literal), for example, different
instructions are generated for "pli [pc, #0]" and "pli [pc, #-0"]. The
disassembler solves it by mapping -0 (negative zero) to -1, -1 to -2, ..., etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97731 91177308-0d34-0410-b5e6-96231b3b80d8
IF(condition(value)):
If the value satisfies the condition, the line is processed by lit; otherwise
it is skipped. A test with no unignored directives is resolved as Unsupported.
The test suite is responsible for defining conditions; conditions are unary
functions over strings. I've defined two conditions in the LLVM test suite,
TARGET (with values like those in TARGETS_TO_BUILD) and BINDING (with values
like those in llvm_bindings). So for example you can write:
IF(BINDING(ocaml)): RUN: %blah %s -o -
and the RUN line will only execute if LLVM was configured with the ocaml
bindings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97726 91177308-0d34-0410-b5e6-96231b3b80d8
transformation much more careful. Truncating binary '01' to '1' sounds like it's
safe until you realize that it switched from positive to negative under a signed
interpretation, and that depends on the icmp predicate.
Also a few miscellaneous cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97721 91177308-0d34-0410-b5e6-96231b3b80d8
we sometimes emit nodes multiple times to string buffers to size them.
Compute the histogram correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97708 91177308-0d34-0410-b5e6-96231b3b80d8
sequence, just emit instruction predicates right before them. This
exposes yet more factoring opportunitites, shrinking the X86 table
to 79144 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97704 91177308-0d34-0410-b5e6-96231b3b80d8
as the very last thing before node emission. This should
dramatically reduce the number of times we do 'MatchAddress'
on X86, speeding up compile time. This also improves comments
in the tables and shrinks the table a bit, now down to
80506 bytes for x86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97703 91177308-0d34-0410-b5e6-96231b3b80d8
destroyed, it could leave stubs in the StubToResolverMap, which would confuse
the lookup for subsequent lazy compilations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97698 91177308-0d34-0410-b5e6-96231b3b80d8
CSE and recursive RAUW calls delete a node from the use list,
invalidating the use list iterator. There's currently no known
way to reproduce this in an unmodified LLVM, however there's no
fundamental reason why a SelectionDAG couldn't be formed which
would trigger this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97665 91177308-0d34-0410-b5e6-96231b3b80d8
entry we're about to process is obviously going to fail, don't
bother pushing a scope only to have it immediately be popped.
This avoids a lot of scope stack traffic in common cases.
Unfortunately, this requires duplicating some of the predicate
dispatch. To avoid duplicating the actual logic I pulled each
predicate out to its own static function which gets used in
both places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97651 91177308-0d34-0410-b5e6-96231b3b80d8
SwitchOpcodeMatcher) and have DAGISelMatcherOpt form it. This
speeds up selection, particularly for X86 which has lots of
variants of instructions with only type differences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97645 91177308-0d34-0410-b5e6-96231b3b80d8