Summary:
This implements the initial version as was proposed earlier this year
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080462.html).
Since then Loop Access Analysis was split out from the Loop Vectorizer
and was made into a separate analysis pass. Loop Distribution becomes
the second user of this analysis.
The pass is off by default and can be enabled
with -enable-loop-distribution. There is currently no notion of
profitability; if there is a loop with dependence cycles, the pass will
try to split them off from other memory operations into a separate loop.
I decided to remove the control-dependence calculation from this first
version. This and the issues with the PDT are actively discussed so it
probably makes sense to treat it separately. Right now I just mark all
terminator instruction required which keeps identical CFGs for each
distributed loop. This seems to be working pretty well for 456.hmmer
where even though there is an empty if-then block in the distributed
loop initially, it gets completely removed.
The pass keeps DominatorTree and LoopInfo updated. I've tested this
with -loop-distribute-verify with the testsuite where we distribute ~90
loops. SimplifyLoop is violated in some cases and I have a FIXME
covering this.
Reviewers: hfinkel, nadav, aschwaighofer
Reviewed By: aschwaighofer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237358 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the parsing of YAML block scalars.
Some code existed for it before, but it couldn't parse block
scalars.
This commit adds a new yaml node type to represent the block
scalar values.
This commit also deletes the 'spec-09-27' and 'spec-09-28' tests
as they are identical to the test file 'spec-09-26'.
This commit introduces 3 new utility functions to the YAML scanner
class: `skip_s_space`, `advanceWhile` and `consumeLineBreakIfPresent`.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D9503
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237314 91177308-0d34-0410-b5e6-96231b3b80d8
ArrayRef already has a SFINAE constructor which can construct ArrayRef<const T*> from ArrayRef<T*>.
This adds methods to do the same directly from SmallVector and std::vector. This avoids an intermediate step through the use of makeArrayRef.
Also update the users of this in LICM and SROA to remove the now unnecessary makeArrayRef call.
Reviewed by David Blaikie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237309 91177308-0d34-0410-b5e6-96231b3b80d8
This version doesn't need begin/end but can instead just take a type which has begin/end methods.
Use this to replace an eligible foreach loop in LoopInfo found by David Blaikie in r237224.
Reviewed by David Blaikie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237301 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds three Function methods to handle function entry counts:
setEntryCount() and getEntryCount().
Entry counts are stored under the MD_prof metadata node with the name
"function_entry_count". They are unsigned 64 bit values set by profilers
(instrumentation and sample profiler changes coming up).
Added documentation for new profile metadata and tests.
Reviewers: dexonsmith, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9628
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237260 91177308-0d34-0410-b5e6-96231b3b80d8
The buildbots are still not satisfied.
MIPS and ARM are failing (even though at least MIPS was expected to pass).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237245 91177308-0d34-0410-b5e6-96231b3b80d8
Several updates for [DebugInfo] Add debug locations to constant SD nodes (r235989).
Includes:
* re-enabling the change (disabled recently);
* missing change for FP constants;
* resetting debug location of constant node if it's used more than at one place
to prevent emission of wrong locations in case of coalesced constants;
* a couple of additional tests.
Now all look ups in CSEMap are wrapped by additional method.
Comment in D9084 suggests that debug locations aren't useful for "target constants",
so there might be one more change related to this API (namely, dropping debug
locations for getTarget*Constant methods).
Differential Revision: http://reviews.llvm.org/D9604
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237237 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237234 91177308-0d34-0410-b5e6-96231b3b80d8
The array passed to LoadAndStorePromoter's constructor was a constant reference to a SmallVectorImpl, which is just the same as passing an ArrayRef.
Also, the data in the array can be 'const Instruction*' instead of 'Instruction*'. Its not possible to convert a SmallVectorImpl<T*> to SmallVectorImpl<const T*>, but ArrayRef does provide such a method.
Currently this added calls to makeArrayRef which should be a nop, but i'm going to kick off a discussion about improving ArrayRef to not need these.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237226 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.
This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.
PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.
Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9546
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237214 91177308-0d34-0410-b5e6-96231b3b80d8
The pass doesn't actually modify the module outside of the function being processed. The only confusing piece is that it both inserts calls and then inlines the resulting calls. Given that, it definitely invalidates module level analysis results, but many FunctionPasses do that.
Differential Revision: http://reviews.llvm.org/D9590
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237185 91177308-0d34-0410-b5e6-96231b3b80d8
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237079 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetRegistry is just a namespace-like class, instantiated in one
place to use a range-based for loop. Instead, expose access to the
registry via a range-based 'targets()' function instead. This makes most
uses a bit awkward/more verbose - but eventually we should just add a
range-based find_if function which will streamline these functions. I'm
happy to mkae them a bit awkward in the interim as encouragement to
improve the algorithms in time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237059 91177308-0d34-0410-b5e6-96231b3b80d8
This is a less ambitious version of:
http://reviews.llvm.org/rL236546
because that was reverted in:
http://reviews.llvm.org/rL236600
because it caused memory corruption that wasn't related to FMF
but was actually due to making nodes with 2 operands derive from a
plain SDNode rather than a BinarySDNode.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237046 91177308-0d34-0410-b5e6-96231b3b80d8
ValueTracking.
This matching functionality is useful in more than just InstCombine, so
make it available in ValueTracking.
NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236998 91177308-0d34-0410-b5e6-96231b3b80d8
The code that builds the dependence graph assumes that two PseudoSourceValues
don't alias. In a tail calling function two FixedStackObjects might refer to the
same location. Worse 'immutable' fixed stack objects like function arguments are
not immutable and will be clobbered.
Change this so that a load from a FixedStackObject is not invariant in a tail
calling function and don't return a PseudoSourceValue for an instruction in tail
calling functions when building the dependence graph so that we handle function
arguments conservatively.
Fix for PR23459.
rdar://20740035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236916 91177308-0d34-0410-b5e6-96231b3b80d8
This new class in a global context contain arch-specific knowledge in order
to provide LLVM libraries, tools and projects with the ability to understand
the architectures. For now, only FPU, ARCH and ARCH extensions on ARM are
supported.
Current behaviour it to parse from free-text to enum values and back, so that
all users can share the same parser and codes. This simplifies a lot both the
ASM/Obj streamers in the back-end (where this came from), and the front-end
parsers for command line arguments (where this is going to be used next).
The previous implementation, using .def/.h includes is deprecated due to its
inflexibility to be built without the backend support and for being too
cumbersome. As more architectures join this scheme, and as more features of
such architectures are added (such as hardware features, type sizes, etc) into
a full blown TargetDescription class, having a set of classes is the most
sane implementation.
The ultimate goal of this refactor both LLVM's and Clang's target description
classes into one unique interface, so that we can de-duplicate and standardise
the descriptions, as well as make it available for other front-ends, tools,
etc.
The FPU parsing for command line options in Clang has been converted to use
this new library and a number of aliases were added for compatibility:
* A bogus neon-vfpv3 alias (neon defaults to vfp3)
* armv5/v6
* {fp4/fp5}-{sp/dp}-d16
Next steps:
* Port Clang's ARCH/EXT parsing to use this library.
* Create a TableGen back-end to generate this information.
* Run this TableGen process regardless of which back-ends are built.
* Expose more information and rename it to TargetDescription.
* Continue re-factoring Clang to use as much of it as possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236900 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236888 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I noticed this bug when deubging a WIP on LSR. I wonder whether and how we
should add a regression test for this.
Test Plan: no tests failed.
Reviewers: atrick
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D9536
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236887 91177308-0d34-0410-b5e6-96231b3b80d8