6535 Commits

Author SHA1 Message Date
Jiangning Liu
e04455d72b Optimize ZERO_EXTEND and SIGN_EXTEND in both SelectionDAG Builder and type
legalization stage. With those two optimizations, fewer signed/zero extension
instructions can be inserted, and then we can expose more opportunities to
Machine CSE pass in back-end.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216066 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-20 12:05:15 +00:00
Juergen Ributzka
f08cddcf56 Reapply [FastISel] Let the target decide first if it wants to materialize a constant (215588).
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.

I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.

Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.

On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.

On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.

On ARM it would generate unnecessary mov instructions or not use mvn.

This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.

Related to <rdar://problem/17420988>.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216006 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-19 19:05:24 +00:00
Oliver Stannard
eb922109f9 Teach the AArch64 backend to handle f16
This allows the AArch64 backend to handle fadd, fsub, fmul and fdiv
operations on f16 (half-precision) types by promoting to f32.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215891 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-18 14:22:39 +00:00
Craig Topper
db77b82ed5 Revert "Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size."
Getting a weird buildbot failure that I need to investigate.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215870 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-18 00:24:38 +00:00
Craig Topper
f06c7072c2 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215868 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-17 23:47:00 +00:00
Matt Arsenault
5f8a9ae17c Fix fmul combines with constant splat vectors
Fixes things like fmul x, 2 -> fadd x, x

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215820 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-16 10:14:19 +00:00
Andrea Di Biagio
89cea3c36b [DAGCombiner] Improve the folding of target independet shuffles to Undef.
When combining a pair of shuffle nodes, check if the combined shuffle mask is
trivially Undef. In case, immediately fold that pair of shuffles to Undef.

The lack of checks for undef masks was the root-cause of a poor-codegen bug
in the dag combiner.

Example:
  %1 = shufflevector <4 x i32> %A, <4 x i32> %B, <4 x i32> <i32 4, i32 1, i32 1, i32 6>
  %2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 0, i32 4, i32 1, i32 6>
  %3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 5, i32 3, i32 3>

Before this patch, on x86 (with -mcpu=corei7) we failed to fold the entire
sequence to Undef value and therefore we generated:
  shufps $-123, %xmm1, $xmm0
  pshufd $-46, %xmm0, %xmm0

With this patch, the entire shuffle sequence is folded to Undef and no
shuffles are generated in the output assembly.

Added new test cases to test 'combine-vec-shuffle-5.ll'.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215797 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-16 00:29:44 +00:00
Juergen Ributzka
f92cdd62c0 [FastISel] Remove an performance debugging assert.
As Jim pointed out this assert isn't really needed to test for correctness,
because the code right afterwards does the same check and falls-back to
SelectionDAG - as intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215735 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-15 17:36:30 +00:00
Juergen Ributzka
6398a7f5fd Revert several FastISel commits to track down a buildbot error.
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215673 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-14 19:56:28 +00:00
Sanjay Patel
9615d702ad optimize vector fneg of bitcasted integer value
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.

This patch is very similar to a fabs patch committed at r214892.

Differential Revision: http://reviews.llvm.org/D4852



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215646 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-14 15:15:28 +00:00
Chandler Carruth
369e0ef67d [SDAG] Fix a bug in the DAG combiner where we would fail to return the
input node after manually adding it to the worklist and using CombineTo.

Once we use CombineTo the input node may have been deleted. Despite this
being *completely confusing* and somewhat broken, the only way to
"correctly" return from a DAG combine after potentially deleting the
input node is to return *that exact node*....

But really, this code should just never have used CombineTo. It won't do
what it wants (returning the node as mentioned above just causes the
combine to infloop). The correct way to combine away a casted load to
a load of the correct type is to RAUW the chain directly and then return
the loaded value to replace the actual value node.

I managed to find this with the vector shuffle fuzzer even though it
clearly has nothing at all to do with vector shuffles and rather those
happen to trigger a load of a constant pool that hits this combine *just
right*. I've included the test as it is small and a nice stress test
that the infrastructure isn't asserting.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215622 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-14 08:18:34 +00:00
Chandler Carruth
14ee003f1a [SDAG] Fix a case where we would iteratively legalize a node during
combining by replacing it with something else but not re-process the
node afterward to remove it.

In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.

It took many million runs of the shuffle fuzz tester to find this.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215611 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-14 01:07:37 +00:00
Juergen Ributzka
eb1c51f8b3 [FastISel] Let the target decide first if it wants to materialize a constant.
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.

On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.

On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.

On ARM it would generate unnecessary mov instructions or not use mvn.

This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.

Related to <rdar://problem/17420988>.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215588 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 22:08:02 +00:00
Benjamin Kramer
00e08fcaa0 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 16:26:38 +00:00
Andrea Di Biagio
05a76eb9f2 [DAGCombiner] Improved target independent vector shuffle combine rule.
This patch improves the existing algorithm in DAGCombiner that
attempts to fold shuffles according to rule:
  shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(y, undef, M3)

Before this change, there were cases where the DAGCombiner conservatively
avoided folding shuffles even if the resulting mask would have been legal.
That is because the algorithm wrongly assumed that commuting
an illegal shuffle mask would always produce an illegal mask.

With this change, we now correctly compute the commuted shuffle mask before
calling method 'isShuffleMaskLegal' on it.
On X86, this improves for example the codegen for the following function:

define <4 x i32> @test(<4 x i32> %A, <4 x i32> %B) {
  %1 = shufflevector <4 x i32> %B, <4 x i32> %A, <4 x i32> <i32 1, i32 2, i32 6, i32 7>
  %2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 2, i32 3>
  ret <4 x i32> %2
}

Before this change the X86 backend (-mcpu=corei7) generated
the following assembly code for function @test:
  shufps $-23, %xmm0, %xmm1  # xmm1 = xmm1[1,2],xmm0[2,3]
  movhlps %xmm1, %xmm1       # xmm1 = xmm1[1,1]
  movaps %xmm1, %xmm0

Now we produce:
  movhlps %xmm0, %xmm0       # xmm0 = xmm0[1,1]

Added extra test cases in combine-vec-shuffle-2.ll to verify that we correctly
fold according to the above-mentioned rule.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215555 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 16:09:40 +00:00
Hal Finkel
e693d3c558 [PowerPC] Implement PPCTargetLowering::getTgtMemIntrinsic
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).

This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215512 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 01:15:40 +00:00
Michael J. Spencer
4935833df5 [x86] Fold extract_vector_elt of a load into the Load's address computation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215409 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-11 23:49:33 +00:00
Hans Wennborg
4d97a1a559 Make this SmallVector size a power of two as suggested by Chandler
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215355 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-11 13:47:57 +00:00
Hans Wennborg
d9dd9692af Increase the size of this SmallVector in CloneNodeWithValues.
In a Clang bootstrap, the size of this vector was always 6.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215335 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-11 02:21:19 +00:00
Petar Jovanovic
97b0c63f6b Add support for scalarizing cttz_zero_undef
Follow up to r214266. Add missing case in ScalarizeVectorResult() for
cttz_zero_undef.

Differential Revision: http://reviews.llvm.org/D4813


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215330 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-10 22:49:54 +00:00
Pedro Artigas
ef6ddcf87a Added a TLI hook to signal that the target does not have or does not care about
floating point exceptions, added use of flag to fold potentially exception 
raising floating point math in selection DAG. No functionality change, as 
targets have to explicitly ask for this behavior and none does today.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215222 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-08 16:46:53 +00:00
Patrik Hagglund
cf403861a3 [pr19635] Revert most of r170537, and add new testcase.
Patch provided by Andrey Kuharev.

Sorry, r170537 was obviously wrong.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215190 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-08 08:21:19 +00:00
Akira Hatanaka
43f6ce9289 [stack protector] Look through bitcasts to get global variable
__stack_chk_guard.

Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.

%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)

Original test case provided by Ana Pazos.

This fixes PR20558.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215167 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-07 23:08:24 +00:00
Eric Christopher
aa5b9c0f6f Temporarily Revert "Nuke the old JIT." as it's not quite ready to
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.

Approved by Jim Grosbach, Lang Hames, Rafael Espindola.

This reverts commits r215111, 215115, 215116, 215117, 215136.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-07 22:02:54 +00:00
Rafael Espindola
875710a2fd Nuke the old JIT.
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.

Thanks to Lang Hames for making MCJIT a good replacement!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215111 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-07 14:21:18 +00:00
Sanjay Patel
6902c687b0 Optimize vector fabs of bitcasted constant integer values.
Allow vector fabs operations on bitcasted constant integer values to be optimized
in the same way that we already optimize scalar fabs.

So for code like this:
%bitcast = bitcast i64 18446744069414584320 to <2 x float> ; 0xFFFF_FFFF_0000_0000
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %bitcast)
%ret = bitcast <2 x float> %fabs to i64

Instead of generating something like this:

movabsq (constant pool loadi of mask for sign bits)
vmovq   (move from integer register to vector/fp register)
vandps  (mask off sign bits)
vmovq   (move vector/fp register back to integer return register)

We should generate:

mov     (put constant value in return register)

I have also removed a redundant clause in the first 'if' statement:
N0.getOperand(0).getValueType().isInteger()

is the same thing as:
IntVT.isInteger()

Testcases for x86 and ARM added to existing files that deal with vector fabs.
One existing testcase for x86 removed because it is no longer ideal.

For more background, please see:
http://reviews.llvm.org/D4770

And:
http://llvm.org/bugs/show_bug.cgi?id=20354

Differential Revision: http://reviews.llvm.org/D4785


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214892 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-05 17:35:22 +00:00
Eric Christopher
6035518e3b Have MachineFunction cache a pointer to the subtarget to make lookups
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.

Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-05 02:39:49 +00:00
Chandler Carruth
8a74e2fc07 [SDAG] Fix a really, really terrible bug in the DAG combiner.
This code is completely wrong. It is also dead, as if it were to *ever*
run, it would crash. Fortunately, after my work to the combiner, it is
at least *possible* to reach the code, and llvm-stress has found a test
case. Thanks to Patrick for reporting.

It would be really good if anyone who remembers how this code works and
what it was intended to do could add some more obvious test coverage
instead of my completely contrived and reduced test case. My test case
was so brittle I left a bread crumb comment in it to help the next
person to stumble on it and not know what it was actually testing for.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214785 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 21:29:59 +00:00
Eric Christopher
9f85dccfc6 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214781 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 21:25:23 +00:00
Chandler Carruth
53dd6f7830 [x86] Don't add nodes to the combined set (and prune subsequent
combines) until they are legal.

Doing it the old way could, when the stars align *just* right, cause
a node to get into the combine set prior to being legalized. Then, when
the same node showed up as an operand to another node later on (but not
so much later on that it had been deleted as dead) we would fail to add
it back to the worklist thinking it had already been combined. This
would in turn cause it to not be legalized. Fortunately, we can also
walk the operands looking for uncombined (and thus potentially
un-legalized) nodes late. It will still ensure that we walk all operands
of all nodes and send all of them through both the legalizer without
changes and the combiner at least once. (Which was the original goal of
this).

I have a test case for this bug, but it is terribly brittle. For
example, it will stop finding the bug the moment I enable the new
shuffle lowering. I don't yet have any test case that reliably exercises
this bug, and it isn't clear that it will be possible to craft one. It
is entirely possible that with the new shuffle lowering the two forms of
doing this are precisely equivalent. That doesn't mean we shouldn't take
the more conservative approach of insisting on things in the combined
set having survived the legalizer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214673 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-03 23:10:59 +00:00
Sanjay Patel
0f2bc49126 fix for PR20354 - Miscompile of fabs due to vectorization
This is intended to be the minimal change needed to fix PR20354 ( http://llvm.org/bugs/show_bug.cgi?id=20354 ). The check for a vector operation was wrong; we need to check that the fabs itself is not a vector operation.

This patch will not generate the optimal code. A constant pool load and 'and' op will be generated instead of just returning a value that we can calculate in advance (as we do for the scalar case). I've put a 'TODO' comment for that here and expect to have that patch ready soon.

There is a very similar optimization that we can do in visitFNEG, so I've put another 'TODO' there and expect to have another patch for that too.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214670 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-03 22:48:23 +00:00
James Molloy
e411c38de9 [AArch64] Teach DAGCombiner that converting two consecutive loads into a vector load is not a good transform when paired loads are available.
The combiner was creating Q-register loads and stores, which then had to be spilled because there are no callee-save Q registers!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214634 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-02 14:51:24 +00:00
Chandler Carruth
4e6635e7e6 [SDAG] Refactor the code which deletes nodes in the DAG combiner to do
so using a single helper which adds operands back onto the worklist.

Several places didn't rigorously do this but a couple already did.
Factoring them together and doing it rigorously is important to delete
things recursively early on in the combiner and get a chance to see
accurate hasOneUse values. While no existing test cases change, an
upcoming patch to add DAG combining logic for PSHUFB requires this to
work correctly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214623 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-02 10:02:07 +00:00
Owen Anderson
ec6d4d8afb Fix issues with ISD::FNEG and ISD::FMA SDNodes where they would not be constant-folded
during DAGCombine in certain circumstances.  Unfortunately, the circumstances required
to trigger the issue seem to require a pretty specific interaction of DAGCombines,
and I haven't been able to find a testcase that reproduces on X86, ARM, or AArch64.
The functionality added here is replicated in essentially every other DAG combine,
so it seems pretty obviously correct.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214622 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-02 08:45:33 +00:00
Justin Bogner
61e99f1b80 CodeGen: Remove commented out code
These two lines have been commented out for over 4 years. They aren't
helping anyone.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214615 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-02 06:47:07 +00:00
Chandler Carruth
04395213ab [SDAG] MorphNodeTo recursively deletes dead operands of the old
fromulation of the node, which isn't really the desired behavior from
within the combiner or legalizer, but is necessary within ISel. I've
added a hopefully helpful comment and fixed the only two places where
this took place.

Yet another step toward the combiner and legalizer not needing to use
update listeners with virtual calls to manage the worklists behind
legalization and combining.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214574 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-01 22:09:43 +00:00
Chandler Carruth
5b74e5abb8 [SDAG] Begin simplifying the way in which the legalizer deletes nodes.
This lifts the (very few) places the legalizer would delete dead nodes
into the outer loop around the legalizer. This is significantly simpler
because it doesn't require the legalizer itself to manage the iterator
validity, and it doesn't require the legalizer to be a DAG update
listener in order to remove things from the legalized set. It also makes
the interface much less contrived for the case of the legalizer running
inside the last phase of DAG combining.

I'm working on centralizing the deletion of nodes during both legalizing
and combining as much as possible. My hope is to remove the need for DAG
update listeners from the combiner next, which would remove a costly
virtual dispatch chain on every deletion. This in turn should allow us
to more aggressively delete DAG nodes during combining which will in
turn allow us to combine more aggressively by exposing the actual nodes
which have single users to the combine phases.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214546 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-01 19:49:59 +00:00
Hal Finkel
d2a90101cd [PowerPC] Generate unaligned vector loads using intrinsics instead of regular loads
Altivec vector loads on PowerPC have an interesting property: They always load
from an aligned address (by rounding down the address actually provided if
necessary). In order to generate an actual unaligned load, you can generate two
load instructions, one with the original address, one offset by one vector
length, and use a special permutation to extract the bytes desired.

When this was originally implemented, I generated these two loads using regular
ISD::LOAD nodes, now marked as aligned. Unfortunately, there is a problem with
this:

The alignment of a load does not contribute to its identity, and SDNodes
are uniqued. So, imagine that we have some unaligned load, L1, that is not
aligned. The routine will create two loads, L1(aligned) and (L1+16)(aligned).
Further imagine that there had already existed a load (L1+16)(unaligned) with
the same chain operand as the load L1. When (L1+16)(aligned) is created as part
of the lowering of L1, this load *is* also the (L1+16)(unaligned) node, just
now marked as aligned (because the new alignment overwrites the old). But the
original users of (L1+16)(unaligned) now get the data intended for the
permutation yielding the data for L1, and (L1+16)(unaligned) no longer exists
to get its own permutation-based expansion. This was PR19991.

A second potential problem has to do with the MMOs on these loads, which can be
used by AA during instruction scheduling to break chain-based dependencies. If
the new "aligned" loads get the MMO from the original unaligned load, this does
not represent the fact that it will load data from below the original address.
Normally, this would not matter, but this load might be combined with another
load pair for a previous vector, and then the dependency on the otherwise-
ignored lower bytes can matter.

To fix both problems, instead of generating the necessary loads using regular
ISD::LOAD instructions, ppc_altivec_lvx intrinsics are used instead. These are
provided with MMOs with a conservative address range.

Unfortunately, I no longer have a failing test case (since PR19991 was
reported, other changes in CodeGen have forced this bug back into hiding it
again). Nevertheless, this should fix the underlying problem.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214481 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-01 05:20:41 +00:00
Louis Gerbarg
e120a76944 White space fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214455 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-31 22:57:46 +00:00
Louis Gerbarg
7d54c5b0f2 Make sure no loads resulting from load->switch DAGCombine are marked invariant
Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.

This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214449 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-31 21:45:05 +00:00
Juergen Ributzka
dc6c25c9ee [FastISel] Fix the patchpoint intrinsic lowering in FastISel for large target addresses.
This fixes a mistake where I accidentially dropped the upper 32bit of a
64bit pointer during FastISel lowering of the patchpoint intrinsic.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214367 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-31 00:11:16 +00:00
Louis Gerbarg
5fb3c84898 Retain alignment requirements for load->selects modified by DAGCombine
DAGCombine may choose to rewrite graphs where two loads feed a select into
graphs where a select of two addresses feed a load. While it sanity checks the
loads to make sure they are broadly equivalent it currently just uses the
alignment restriction of the left node. In cases where the right node has
stronger alignment requiresment this may lead to bad codegen, such as generating
an aligned load where an unaligned load is required. This patch makes the
combine generate a load with an alignment that is the same as whichever is more
restrictive of the two alignments.

Tests included.

rdar://17762530

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214322 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-30 18:24:41 +00:00
Petar Jovanovic
278da370ce Add support for scalarizing ctlz_zero_undef
Fix the missing case in ScalarizeVectorResult() that was exposed with
libclcore.bc in Android.

Differential Revision: http://reviews.llvm.org/D4645


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214266 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-30 00:44:03 +00:00
Tim Northover
b1692ad2c3 ARM: fix @llvm.convert.from.fp16 on softfloat targets.
We need to make sure we use the softened version of all appropriate operands in
the libcall, or things go horribly wrong. This may entail actually executing a
1-stage softening.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214175 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-29 09:56:38 +00:00
Chandler Carruth
d9d33c92a7 [SDAG] Add DEBUG logging to the legalizer, fixing a "bug" found by
inspection in the proccess, and shuffle the logging in the DAG combiner
around a bit.

With this it is much easier to follow what the legalizer is doing. It
should even accurately present most of the strange legalization
operations where a single node is replaced by multiple nodes, etc. There
is still some information lost (we log SDNodes not SDValues so we don't
log which result is used for which thing), but I think this is much
closer to a usable system. Notably, this will make it *much* more
apparant when legalization is actually happening inside the combiner, or
when there is a cycle caused by interactions of the legalizer and the
combiner.

The "bug" I fixed here I'm not sure is remotely possible to trigger. We
were only adding one of the nodes in a replacement to the updated set
rather than all of the nodes in the replacement. Realistically, the
worst result of this are nodes not getting back onto the worklist in the
DAG combiner. I doubt it is possible to trigger this today, and
I certainly don't have any ideas about how, but this at least brings the
code into alignment with the principled operation of the routine.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214105 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-28 17:55:07 +00:00
Matt Arsenault
2dd264c8a3 Add alignment value to allowsUnalignedMemoryAccess
Rename to allowsMisalignedMemoryAccess.

On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214055 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-27 17:46:40 +00:00
Chandler Carruth
f1ce818bef [SDAG] Add an assert that we don't mess up the number of values when
replacing nodes in the legalizer.

This caught a number of bugs for me during development.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214022 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-26 05:53:16 +00:00
Chandler Carruth
722419ef52 [SDAG] Simplify the code for handling single-value nodes and add
a missing transfer of debug information (without which tests fail).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214021 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-26 05:52:51 +00:00
Chandler Carruth
69359ed45b [SDAG] When performing post-legalize DAG combining, run the legalizer
over each node in the worklist prior to combining.

This allows the combiner to produce new nodes which need to go back
through legalization. This is particularly useful when generating
operands to target specific nodes in a post-legalize DAG combine where
the operands are significantly easier to express as pre-legalized
operations. My immediate use case will be PSHUFB formation where we need
to build a constant shuffle mask with a build_vector node.

This also refactors the relevant functionality in the legalizer to
support this, and updates relevant tests. I've spoken to the R600 folks
and these changes look like improvements to them. The avx512 change
needs to be investigated, I suspect there is a disagreement between the
legalizer and the DAG combiner there, but it seems a minor issue so
leaving it to be re-evaluated after this patch.

Differential Revision: http://reviews.llvm.org/D4564

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214020 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-26 05:49:40 +00:00
Hal Finkel
8ef7b17dfc Add @llvm.assume, lowering, and some basic properties
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:

 - llvm.invariant(true) is dead.
 - llvm.invariant(false) is unreachable (this directly corresponds to the
   documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).

The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-25 21:13:35 +00:00