The PPCTargetLowering::SelectAddressRegImm routine needs to handle
FrameIndex nodes in a special manner, by tranlating them into a
TargetFrameIndex node. This was done in most cases, but seems to
have been neglected in one path: when the input tree has an OR of
the FrameIndex with an immediate. This can happen if the FrameIndex
can be proven to be sufficiently aligned that an OR of that immediate
is equivalent to an ADD.
The missing handling of FrameIndex in that case caused the SelectionDAG
instruction selection to miss opportunities to merge the OR back into
the FrameIndex node, leading to superfluous addi/ori instructions in
the final assembler output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213482 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213474 91177308-0d34-0410-b5e6-96231b3b80d8
This probably was killed by some generic DAGCombiner
improvements in checking the TargetBooleanContents instead
of just 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213471 91177308-0d34-0410-b5e6-96231b3b80d8
Also removes an unnecessary '.release()' that should've been a std::move
anyway. (I'm on a hunt for '.release()' calls)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213464 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an optional parameter to the EmitSymbolValue method in MCStreamer to
permit emitting a symbol value as a section relative value. This is to cover
the use in MCDwarf which should not really know about how to emit a section
relative value for a given target.
This addresses post-review comments from Eric Christopher in SVN r213275.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213463 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions can only take a limited input range, and return
the constant value 1 out of range. We should do range reduction to
be able to process arbitrary values. Use a FRACT instruction after
normalization to achieve this. Also add a test for constant folding
with the lowered code with unsafe-fp-math enabled.
v2: use DAG lowering instead of intrinsic, adapt test
v3: calculate constant, fold pattern into instruction definition
v4: misc style fixes, add sin-fold testcase, cosmetics
Patch by Grigori Goronzy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213458 91177308-0d34-0410-b5e6-96231b3b80d8
IRBuilder has CreateAligned(Load|Store) functions; use them and we don't need
to make a second call to setAlignment.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213453 91177308-0d34-0410-b5e6-96231b3b80d8
There are some kinds of metadata that are safe to propagate from the scalar
instructions to the vector instructions (fpmath and tbaa currently).
Regarding TBAA, one might worry about propagating it on if-converted loads and
stores, because the metadata might have had a control dependency on the
condition, and thus actually aliased with some other non-speculated memory
access when the condition was false. However, this would be caught by the
runtime overlap checks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213452 91177308-0d34-0410-b5e6-96231b3b80d8
Function @test3c should check that the DAGCombiner is able to fold a pair of
shuffles into a new shuffle with a permute mask of <6,7,2,3>. However, one of
the shuffles in @test3c had a wrong permute mask; this prevented the DAGCombiner
from folding the shuffles into the expected result.
Now that the shuffle mask is fixed, the backend correctly folds the two shuffles
in function @test3c into a single movhlps instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213451 91177308-0d34-0410-b5e6-96231b3b80d8
All of the other similar functions in that part of the file look through
addrspacecast in addition to bitcast, and I see no reason why
stripAndAccumulateInBoundsConstantOffsets shouldn't do so also.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213449 91177308-0d34-0410-b5e6-96231b3b80d8
When we have a parameter (or call site return) with a dereferenceable
attribute, it can specify the size of an array pointed to by that parameter. If
we have a value for which we can accumulate a constant offset to such a
parameter, then we can use that offset in a direct comparison with the size
specified by the dereferenceable attribute.
This enables us to handle cases like this:
int foo(int a[static 3]) {
return a[2]; /* this is always dereferenceable */
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213447 91177308-0d34-0410-b5e6-96231b3b80d8
When performing a dynamic stack adjustment without optimisations, we would mark
SP as def and R4 as kill. This occurred as part of the expansion of a
WIN__CHKSTK SDNode which indicated the proper handling of SP and R4. The result
would be that we would double define SP as part of an operation, which is
obviously incorrect.
Furthermore, the VTList for the chain had an incorrect parameter type of i32
instead of Other.
Correct these to permit proper lowering of __builtin_alloca at -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213442 91177308-0d34-0410-b5e6-96231b3b80d8
It's also possible to just write "= nullptr", but there's some question
of whether that's as readable, so I leave it up to authors to pick which
they prefer for now. If we want to discuss standardizing on one or the
other, we can do that at some point in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213438 91177308-0d34-0410-b5e6-96231b3b80d8
getBasicRelocationEntry to use this rather than 'memcpy' to get the
relocation addend. Targets with non-trivial addend encodings (E.g. AArch64) can
override decodeAddend to handle immediates with interesting encodings.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213435 91177308-0d34-0410-b5e6-96231b3b80d8
a) Move the replacement level decision to the target machine.
b) Create additional subtargets at the TargetMachine level to
cache and make replacement easy.
c) Make the mips16 features obvious.
d) Remove the override logic as it no longer does anything.
e) Have MipsModuleDAGToDAGISel take only the target machine.
f) Have the constant islands pass grab the current subtarget
from the MachineFunction (via the TargetMachine) instead
of caching it.
g) Unconditionally initialize TLOF.
h) Remove the old complicated subtarget based resetting and
replace it with simple conditionals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213430 91177308-0d34-0410-b5e6-96231b3b80d8
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213427 91177308-0d34-0410-b5e6-96231b3b80d8
two reasons:
a) we're already caching the target machine which contains it,
b) which relocation model you get is dependent upon whether or
not you ask before MCCodeGenInfo is constructed on the target
machine, so avoid any latent issues there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213420 91177308-0d34-0410-b5e6-96231b3b80d8
RelocationEntry.
No test case yet, as this primarily hits GOT entries, which RuntimeDyldChecker
can't examine yet. I'm actively working on features that will enable us to
test this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213408 91177308-0d34-0410-b5e6-96231b3b80d8
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213396 91177308-0d34-0410-b5e6-96231b3b80d8
Recommits 212776 which was reverted in r212793. This has been committed
and recommitted a few times as I try to test it harder and find/fix more
issues. The most recent revert was due to an asan bot failure which I
can't seem to reproduce locally, though I believe I'm following all the
steps the buildbot does.
So I'm going to recommit this in the hopes of investigating the failure
on the buildbot itself... apologies in advance for the bot noise. If
anyone sees failures with this /please/ provide me with any
reproductions, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213391 91177308-0d34-0410-b5e6-96231b3b80d8