simplifylibcalls optimization is thus valid for C++ but not C.
It's not important enough to worry about for C++ apps, so just
remove it.
rdar://7191924
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80887 91177308-0d34-0410-b5e6-96231b3b80d8
and we get the original pointer type. This doesn't mean that we're
at the first pointer being indexed. Correct the predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80762 91177308-0d34-0410-b5e6-96231b3b80d8
don't alias. Remove an old and poorly reduced testcase that fails
with this transform for reasons unrelated to the original test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80693 91177308-0d34-0410-b5e6-96231b3b80d8
for sanity. This didn't turn up any bugs.
Change CallGraphNode to maintain its "callsite" information in the
call edges list as a WeakVH instead of as an instruction*. This fixes
a broad class of dangling pointer bugs, and makes CallGraph have a number
of useful invariants again. This fixes the class of problem indicated
by PR4029 and PR3601.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80663 91177308-0d34-0410-b5e6-96231b3b80d8
changes: SimplifyDemandedBits can't use the builder yet because it
has the wrong insertion point. This fixes a crash building
MultiSource/Benchmarks/PAQ8p
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80537 91177308-0d34-0410-b5e6-96231b3b80d8
indirect function pointer, inline it, then go to delete the body.
The problem is that the callgraph had other references to the function,
though the inliner had no way to know it, so we got a dangling pointer
and an invalid iterator out of the deal.
The fix to this is pretty simple: stop the inliner from deleting the
function by knowing that there are references to it. Do this by making
CallGraphNodes contain a refcount. This requires moving deletion of
available_externally functions to the module-level cleanup sweep where
it belongs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80533 91177308-0d34-0410-b5e6-96231b3b80d8
is itself a bitcast. Since we have gep(bitcast(bitcast(y))) in this
case, just wait for the two bitcasts to get zapped. This prevents
instcombine from confusing some aliasing stuff, and allows it to
directly eliminate the load in the testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80508 91177308-0d34-0410-b5e6-96231b3b80d8
calls into a function and if the calls bring in arrays, try to merge
them together to reduce stack size. For example, in the testcase
we'd previously end up with 4 allocas, now we end up with 2 allocas.
As described in the comments, this is not really the ideal solution
to this problem, but it is surprisingly effective. For example, on
176.gcc, we end up eliminating 67 arrays at "gccas" time and another
24 at "llvm-ld" time.
One piece of concern that I didn't look into: at -O0 -g with
forced inlining this will almost certainly result in worse debug
info. I think this is acceptable though given that this is a case
of "debugging optimized code", and we don't want debug info to
prevent the optimizer from doing things anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80215 91177308-0d34-0410-b5e6-96231b3b80d8
sinking code, since they are special. If the loop preheader happens
to be the entry block of a function, don't sink static allocas
out of it. This fixes PR4775.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80010 91177308-0d34-0410-b5e6-96231b3b80d8
This change speeds up llvm-gcc by more then 6% at "-O0 -g" (measured by compiling InstructionCombining.cpp!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79977 91177308-0d34-0410-b5e6-96231b3b80d8
array member of a struct, it's possible to land in an arbitrary position
inside that struct, such that attempting to find further getelementptr
indices will fail. In such cases, folding cannot be done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79485 91177308-0d34-0410-b5e6-96231b3b80d8
static extents of the static array type, it causes GlobalOpt and
other passes to be more conservative. This canonicalization also
allows the constant folder to add "inbounds" to GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79440 91177308-0d34-0410-b5e6-96231b3b80d8
TargetData is not present. It still uses TargetData when available.
This generalization also fixed some limitations in the TargetData
case; the attached testcase covers this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79344 91177308-0d34-0410-b5e6-96231b3b80d8
unfoldable references to a PHI node in the block being folded, and disable
the transformation in that case. The correct transformation of such PHI
nodes depends on whether BB dominates Succ, and dominance is expensive
to compute here. (Alternatively, it's possible to check whether any
uses are live, but that's also essentially a dominance calculation.
Another alternative is to use reg2mem, but it probably isn't a good idea to
use that in simplifycfg.)
Also, remove some incorrect code from CanPropagatePredecessorsForPHIs
which is made unnecessary with this patch: it didn't consider the case
where a PHI node in BB has multiple uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79174 91177308-0d34-0410-b5e6-96231b3b80d8
the new load by the old load instead of by the extract element because
a store could have occurred between the load and extract element.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78891 91177308-0d34-0410-b5e6-96231b3b80d8