For each compile unit, we want to register a function that will flush that
compile unit. Otherwise, __gcov_flush() would only flush the counters within the
current compile unit, and not any outside of it.
PR15191 & <rdar://problem/13167507>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177340 91177308-0d34-0410-b5e6-96231b3b80d8
PPC64 supports unaligned loads and stores of 64-bit values, but
in order to use the r+i forms, the offset must be a multiple of 4.
Unfortunately, this cannot always be determined by examining the
immediate itself because it might be available only via a TOC entry.
In order to get around this issue, we additionally predicate the
selection of the r+i form on the alignment of the load or store
(forcing it to be at least 4 in order to select the r+i form).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177338 91177308-0d34-0410-b5e6-96231b3b80d8
The default logic marks them as too expensive.
For example, before this patch we estimated:
cost of 16 for instruction: %r = uitofp <4 x i16> %v0 to <4 x float>
While this translates to:
vmovl.u16 q8, d16
vcvt.f32.u32 q8, q8
All other costs are left to the values assigned by the fallback logic. Theses
costs are mostly reasonable in the sense that they get progressively more
expensive as the instruction sequences emitted get longer.
radar://13445992
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177334 91177308-0d34-0410-b5e6-96231b3b80d8
Fix cost of some "cheap" cast instructions. Before this patch we used to
estimate for example:
cost of 16 for instruction: %r = fptoui <4 x float> %v0 to <4 x i16>
While we would emit:
vcvt.s32.f32 q8, q8
vmovn.i32 d16, q8
vuzp.8 d16, d17
All other costs are left to the values assigned by the fallback logic. Theses
costs are mostly reasonable in the sense that they get progressively more
expensive as the instruction sequences emitted get longer.
radar://13434072
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177333 91177308-0d34-0410-b5e6-96231b3b80d8
Hal Finkel recently added code to allow unaligned memory references
for PowerPC. Two tests were temporarily modified with
-disable-ppc-unaligned to keep them from failing. This patch adjusts
the expected code generation for the unaligned references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177328 91177308-0d34-0410-b5e6-96231b3b80d8
We hitch a ride with the existing OpndItins class that was used to add
instruction itinerary classes in the many multiclasses in this file.
Use the link provided by the X86FoldableSchedWrite.Folded to find the
right SchedWrite for folded loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177326 91177308-0d34-0410-b5e6-96231b3b80d8
This new-style scheduling information is going to replace the
instruction iteneraries.
This also serves as a test case for Andy's fix in r177317.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177323 91177308-0d34-0410-b5e6-96231b3b80d8
This handles the case where we have an inbounds GEP with alloca as the pointer.
This fixes the regression in PR12750 and rdar://13286434.
Note that we can also fix this by handling some GEP cases in isKnownNonNull.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177321 91177308-0d34-0410-b5e6-96231b3b80d8
Properly handle cases where a group of instructions have different
SchedRW lists with the same itinerary class.
This was supposed to work, but I left in an early break.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177317 91177308-0d34-0410-b5e6-96231b3b80d8
Apparently my final cleanup to use a relevant suffix for these tests before
committing r176831 caused them to stop running since lit wasn't configured to
run tests with that suffix in those directories (why don't we just have a
global suffix list?). So, add the suffix to the relevant directories & fix the
test that has bitrotted over the last week due to my debug info schema changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177315 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes an assert that would occur on loops with large constant counts
(like looping for ((uint32_t) -1) iterations on PPC64). The existing code did
not handle counts that it computed to be negative (asserting instead), but
these can be created with valid inputs.
This bug was discovered by bugpoint while I was attempting to isolate a
completely different problem.
Also, in writing test cases for the negative-count problem, I discovered that
the ori/lsi handling was broken (there was a typo which caused the logic that
was supposed to detect these pairs and extract the iteration count to always
fail). This has now also been corrected (and is covered by one of the new test
cases).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177295 91177308-0d34-0410-b5e6-96231b3b80d8
Because the initial-value constants had not been added to the list
of instructions considered for DCE the resulting code had redundant
constant-materialization instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177294 91177308-0d34-0410-b5e6-96231b3b80d8
The always-true "(int)Int == (signed)Int" comparison was found
while experimenting with a potential new Clang warning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177290 91177308-0d34-0410-b5e6-96231b3b80d8
we weren't differntiating floating-point zeroinitializers from other zero-initializers)
which was causing problems for code relying upon a + (+0.0f) to, eg, flush denormals to
0. Make the scalar and vector cases have the same behaviour.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177279 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177277 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177276 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177275 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177274 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177273 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177272 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately the previous fix for inserting waits for unordered
defines wasn't sufficient, cause it's possible that even ordered
defines are only partially used (or not used at all).
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177271 91177308-0d34-0410-b5e6-96231b3b80d8
MinGW is almost completely compatible to MSVC, with the exception of the _tls_array global not being available.
Patch by David Nadlinger!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177257 91177308-0d34-0410-b5e6-96231b3b80d8
The linker sorts the .tls$<xyz> sections by name, and we need
to make sure any extra sections we produce (e.g. for weak globals)
always end up between .tls$AAA and .tls$ZZZ, even if the name
starts with e.g. an underscore.
Patch by David Nadlinger!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177256 91177308-0d34-0410-b5e6-96231b3b80d8
This computes the type of an instruction operand or result based on the
records in the instruction's ins and outs lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177244 91177308-0d34-0410-b5e6-96231b3b80d8
*NOTE* I verified that the original bug behind
dont-infinite-loop-during-block-escape-analysis.ll occurs when using opt on
retain-block-escape-analysis.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177240 91177308-0d34-0410-b5e6-96231b3b80d8