This name is less descriptive, but it sort of puts things in the
'llvm.frame...' namespace, relating it to frameallocate and
frameaddress. It also avoids using "allocate" and "allocation" together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225752 91177308-0d34-0410-b5e6-96231b3b80d8
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.
Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.
These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.
Reviewers: echristo, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D6493
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225746 91177308-0d34-0410-b5e6-96231b3b80d8
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode). This adds the `distinct` keyword to assembly.
Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:
- self-references, which are never uniqued, and
- nodes whose operands are replaced that hit a uniquing collision.
The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.
Part of PR22111.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225474 91177308-0d34-0410-b5e6-96231b3b80d8
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.
Just dropping the $name causes problems for
@foo = globabl i32 0, comdat
$bar = comdat ...
and
declare void @foo() comdat
$bar = comdat ...
So the syntax is changed to
@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat
and
declare void @foo() comdat($c1)
declare void @foo() comdat
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225302 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
We were already requiring 2.5, which meant that people on old linux distros
had to upgrade anyway.
Requiring python 2.6 will make supporting 3.X easier as we can use the 3.X
exception syntax.
According to the discussion on llvmdev, there is not much value is requiring
just 2.6, we may as well just require 2.7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224129 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223672 91177308-0d34-0410-b5e6-96231b3b80d8
a description of how to add debug information using DWARF and
DIBuilder to the language.
Thanks to David Blaikie for his assistance with this tutorial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223671 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223189 91177308-0d34-0410-b5e6-96231b3b80d8
This is the fourth and final patch in the statepoint series. It contains the documentation for the statepoint intrinsics and their usage.
There's definitely still room to improve the documentation here, but I wanted to get this landed so it was available for others. There will likely be a series of small cleanup changes over the next few weeks as we work to clarify and revise the documentation. If you have comments or questions, please feel free to discuss them either in this commit thread, the original review thread, or on llvmdev. Comments are more than welcome.
Reviewed by: atrick, ributzka
Differential Revision: http://reviews.llvm.org/D5683
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223143 91177308-0d34-0410-b5e6-96231b3b80d8
Clarify the wording around !invariant.load to properly reflect the semantics of such loads with respect to control dependence and location lifetime. To the best of my knowledge, the revised wording respects the actual implementation and understanding of issues involved highlighted in the recent 'Optimization hints for "constant" loads' thread on LLVMDev.
In particular, I'm aiming for the following results:
- To clarify that an invariant.load can fault and must respect control dependence. In particular, it is not sound to unconditionally pull an invariant load out of a loop if that loop would potentially never execute.
- To clarify that the invariant nature of a given pointer does not preclude the modification of that location through a pointer which is unrelated to the load operand. In particular, initializing a location and then passing a pointer through an opaque intrinsic which produces a new unrelated pointer, should behave as expected provided that the intrinsic is memory dependent on the initializing store.
- To clarify that storing a value to an invariant location is defined. It can not, for example, be considered unreachable. The value stored can be assumed to be equal to the value of any previous (or following!) invariant load, but the store itself is defined.
I recommend that anyone interested in using !invariant.load, or optimizing for them, read over the discussion in the review thread. A number of motivating examples are discussed.
Differential Revision: http://reviews.llvm.org/D6346
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222700 91177308-0d34-0410-b5e6-96231b3b80d8
The previous description of the noalias attribute did not accurately specify
the implemented semantics, and the terminology used differed unnecessarily
from that used by the C specification to define the semantics of restrict. For
the argument attribute, the semantics can be precisely specified in terms of
objects accessed through pointers based on the arguments, and this is now what
is done.
Saying that the semantics are 'slightly weaker' than that provided by C99
restrict is not really useful without further elaboration, so that has been
removed from the sentence.
noalias on a return value is really used to mean that the function is
malloc-like (and, in fact, we use this attribute to represent
__attribute__((malloc)) in Clang), and this is a stronger guarantee than that
provided by restrict (because it is a property of the pointed-to memory region,
not just a guarantee on object access). Clarifying this is relevant to fixing
(and was motivated by the discussion on) PR21556.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222497 91177308-0d34-0410-b5e6-96231b3b80d8
This change makes use of the new "job pool" capability in cmake 3.0
with ninja generator to allow limiting the number of concurrent jobs
of a certain type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222341 91177308-0d34-0410-b5e6-96231b3b80d8
- Make CallGraphSCCPass's paragraph about doFinalization refer to
runOnSCC instead of runOnFunction, since that's what it's about.
- Fix a reference in the FunctionPass paragraph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222222 91177308-0d34-0410-b5e6-96231b3b80d8
This was done using the Sparc and PowerPC AsmParsers as guides. So far it
is very simple and only supports sopp instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221994 91177308-0d34-0410-b5e6-96231b3b80d8
The old examples had missing/incorrect flags that were causing failures on newer
versions of clang and the tutorial code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221419 91177308-0d34-0410-b5e6-96231b3b80d8
The given example was overflowing its alloca and segfaulting if actually run on
x86, so it's a good idea to provide something that works there too.
Patch by Ramkumar Ramachandra.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221077 91177308-0d34-0410-b5e6-96231b3b80d8
When several build targets, e.g. Debug+Asserts and Release+Asserts
are present, ocamldoc complains of duplicate interfaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220831 91177308-0d34-0410-b5e6-96231b3b80d8
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220341 91177308-0d34-0410-b5e6-96231b3b80d8
The newly introduced 'nonnull' metadata is analogous to existing 'nonnull' attributes, but applies to load instructions rather than call arguments or returns. Long term, it would be nice to combine these into a single construct. The value of the load is allowed to vary between successive loads, but null is not a valid value to be loaded by any load marked nonnull.
Reviewed by: Hal Finkel
Differential Revision: http://reviews.llvm.org/D5220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220240 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-symbolizer will consult one of the .dSYM paths passed via -dsym-hint
if it fails to find the .dSYM bundle at the default location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220004 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We currently emit an DW_AT_APPLE_property_attribute with a value that is a
bitfield describing the various attributes applied to an ObjectiveC property.
While trying to add testing to one of my dwarfdump patches that would pretty
print that, I realized this information looks totally broken and has maybe
never been correct.
As with every DWARF info, we have some enum in Dwarf.h that describes this
attribute (enum ApplePropertyAttributes). It seems however that the attribute
value is set from another definition of these flags in Sema/DeclSpec.h (enum
ObjCPropertyAttributeKind). And these 2 enums aren't in sync.
This patch updates the Dwarf.h values to the ones we are (and have been for
a very long time) emitting. We change some publicly (and even documented
in SourceLevelDebugging.rst) values, but I doubt this could be an issue as
the information has been wrong for so long...
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5653
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219311 91177308-0d34-0410-b5e6-96231b3b80d8
Update a couple of the examples of debug info metadata, and prune the
rest. Point to the true reference implementation in the source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219051 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I changed various bits of the compilation of atomics recently, and forgot
updating the documentation. This patch just brings it up to date.
Test Plan: no change to the code
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5590
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218937 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218078 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
They were used in the 'Module Structure' example but weren't otherwise
documented.
Credit to Reed Kotler for noticing.
Reviewers: hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: http://reviews.llvm.org/D5191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217583 91177308-0d34-0410-b5e6-96231b3b80d8
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reinstates commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
I've been assuming chain operands were always the first operand,
since the documentation says this. I was confused about why they
were missing after instruction selection. Apparently the convention
changes to using the last operand for MachineSDNodes and I've never
noticed before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216934 91177308-0d34-0410-b5e6-96231b3b80d8
I've fixed most of the simple bugs and currently "check-llvm" test suite
has 26 failures, and "check-clang" suite has 5 failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216701 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There is no functionality change here except in the way we assemble and
dump musttail calls in variadic functions. There's really no need to
separate out the bits for musttail and "is forwarding varargs" on call
instructions. A musttail call by definition has to forward the ellipsis
or it would fail verification.
Reviewers: chandlerc, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4892
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216423 91177308-0d34-0410-b5e6-96231b3b80d8
Somewhat unnoticed in the original implementation of discriminators, but
it could cause instructions to end up in new, small,
DW_TAG_lexical_blocks due to the use of DILexicalBlock to track
discriminator changes.
Instead, use DILexicalBlockFile which we already use to track file
changes without introducing new scopes, so it works well to track
discriminator changes in the same way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216239 91177308-0d34-0410-b5e6-96231b3b80d8
Implement `uselistorder` and `uselistorder_bb` assembly directives,
which allow the use-list order to be recovered when round-tripping to
assembly.
This is the bulk of PR20515.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216025 91177308-0d34-0410-b5e6-96231b3b80d8
I should have included this as part of r215986, which worked around this
corner by changing ArrayRef::equals() not to use std::equal. Alas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215988 91177308-0d34-0410-b5e6-96231b3b80d8
auroraux.org is not resolving.
I will add this to the release notes as soon as I figure out where to put the
3.6 release notes :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215645 91177308-0d34-0410-b5e6-96231b3b80d8
treated as errors (which is still the default). This is useful when
working on documentation that has existing errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215634 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215111 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch add a --show-xfail flag. If this flag is specified then each xfail test will be printed to output.
When it is not given xfail tests are ignored. Ignoring xfail tests is the current behavior.
This flag is meant to mirror the --show-unsupported flag that was recently added.
Reviewers: ddunbar, EricWF
Reviewed By: EricWF
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4750
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214609 91177308-0d34-0410-b5e6-96231b3b80d8
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214576 91177308-0d34-0410-b5e6-96231b3b80d8
Users keep emailing us about the difficulties of getting LD_LIBRARY_PATH
into their environment, which should be completely unecessary. Try to
strengthen the rpath recommentation by putting in an example cmake
invocation.
Speaking of which, we might want to make CMake the recommended build
system in GettingStarted.html.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214565 91177308-0d34-0410-b5e6-96231b3b80d8
I wrongly included a description of a patch that came in after 3.5 branched
and has not been backported.
Thanks,
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214404 91177308-0d34-0410-b5e6-96231b3b80d8
Here's my take on 3.5 changes for PowerPC. Others please feel free to add,
edit, delete as desired.
Thanks,
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214403 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214355 91177308-0d34-0410-b5e6-96231b3b80d8
According to VectorType::isValidElementType, any integer, floating point
or pointer type is a valid vector element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214302 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
In the process of fixing the noalias parameter -> metadata conversion process
that will take place during inlining (which will be committed soon, but not
turned on by default), I have come to realize that the semantics provided by
yesterday's commit are not really what we want. Here's why:
void foo(noalias a, noalias b, noalias c, bool x) {
*q = x ? a : b;
*c = *q;
}
Generically, we know that *c does not alias with *a and with *b (so there is an
'and' in what we know we're not), and we know that *q might be derived from *a
or from *b (so there is an 'or' in what we know that we are). So we do not want
the semantics currently, where any noalias scope matching any alias.scope
causes a NoAlias return. What we want to know is that the noalias scopes form a
superset of the alias.scope list (meaning that all the things we know we're not
is a superset of all of things the other instruction might be).
Making that change, however, introduces a composibility problem. If we inline
once, adding the noalias metadata, and then inline again adding more, and we
append new scopes onto the noalias and alias.scope lists each time. But, this
means that we could change what was a NoAlias result previously into a MayAlias
result because we appended an additional scope onto one of the alias.scope
lists. So, instead of giving scopes the ability to have parents (which I had
borrowed from the TBAA implementation, but seems increasingly unlikely to be
useful in practice), I've given them domains. The subset/superset condition now
applies within each domain independently, and we only need it to hold in one
domain. Each time we inline, we add the new scopes in a new scope domain, and
everything now composes nicely. In addition, this simplifies the
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213948 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213670 91177308-0d34-0410-b5e6-96231b3b80d8
to globally be controlled. Individual targets (e.g. ExceptionDemo) can
still override this by using LLVM_REQUIRE_RTTI and LLVM_REQUIRE_EH if
they need to be compiled with RTTI or exception handling respectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213663 91177308-0d34-0410-b5e6-96231b3b80d8
- When CMake builds the documentation with sphinx-build it treats
warnings as errors. We should be consistent with what we do in
CMake.
- Having warnings treated as errors will hopefully encourage
developers to write documentation correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213661 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build. I'll reply on the list in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213562 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213474 91177308-0d34-0410-b5e6-96231b3b80d8
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213385 91177308-0d34-0410-b5e6-96231b3b80d8
This optional dependency on the udis86 library was added some time back to aid
JIT development, but doesn't make much sense to link into LLVM binaries these
days.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213300 91177308-0d34-0410-b5e6-96231b3b80d8
Convert the operand to int if possible, i.e. if the value is properly
initialized. (I suppose there is further room for improvement here to also
peform the shift if the uninitialized bits are shifted out.)
With this little change we can now compute the scaling factor for compressed
displacement with pure tablegen code in the X86 backend. This is useful
because both the X86-disassembler-specific part of tablegen and the assembler
need this and TD is the natural sharing place.
The patch also adds the missing documentation for the shift and add operator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213277 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213248 91177308-0d34-0410-b5e6-96231b3b80d8
Add a `MapVector::remove_if()` that erases items in bulk in linear time,
as opposed to quadratic time for repeated calls to `MapVector::erase()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213090 91177308-0d34-0410-b5e6-96231b3b80d8
Actually update the changed indexes in the map portion of `MapVector`
when erasing from the middle. Add a unit test that checks for this.
Note that `MapVector::erase()` is a linear time operation (it was and
still is). I'll commit a new method in a moment called
`MapVector::remove_if()` that deletes multiple entries in linear time,
which should be slightly less painful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213084 91177308-0d34-0410-b5e6-96231b3b80d8
Add verifier checks. We already check these in the assembly parser, but
a frontend producing IR in memory wouldn't hit those checks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213027 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add FileCheck -implicit-check-not option which allows specifying a
pattern that should only occur in the input when explicitly matched by a
positive check. This feature allows checking tool diagnostics in a way
clang -verify does it for compiler diagnostics.
The option has been tested on a number of clang-tidy checks, I'll post a link to
the clang-tidy patch to this thread.
Once there's an agreement on the general direction, I can add tests and
documentation.
Reviewers: djasper, bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4462
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212810 91177308-0d34-0410-b5e6-96231b3b80d8
Clang-cl supports MSVC-style RTTI now, and we can even compile
typeid(...) with /GR-. Just don't instantiate std::function with a
polymorphic type, or bad things will happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212148 91177308-0d34-0410-b5e6-96231b3b80d8
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211920 91177308-0d34-0410-b5e6-96231b3b80d8
I'll fix the problems in libclang and other projects in ways that don't
require <mutex> until we sort out the cygwin situation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211900 91177308-0d34-0410-b5e6-96231b3b80d8
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211710 91177308-0d34-0410-b5e6-96231b3b80d8
After a number of previous small iterations, the functions
llvm_start_multithreaded() and llvm_stop_multithreaded() have
been reduced essentially to no-ops. This change removes them
entirely.
Reviewed by: rnk, dblaikie
Differential Revision: http://reviews.llvm.org/D4216
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211287 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211281 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the LLVM global lock, and updates all existing
users of the global lock to use their own mutex. None of the
existing users of the global lock were protecting code that was
mutually exclusive with any of the other users of the global
lock, so its purpose was not being met.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4142
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211277 91177308-0d34-0410-b5e6-96231b3b80d8
It makes the types look like they're single-element structures. And
when we have instructions that *do* result in a struct, that can get
confusing rather quickly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210905 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210903 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure what it means to set a section for a declaration in another
translation unit, but there are some tests in the tree that do it so it seems
to be legal now regardless.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210819 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for Global Variables in LangRef is missing the initializer.
This syntax section was added in r199218 along with changes to the
dllexport/dllimport handling, and I guess it was just an oversight to omit the
initializer values. I’ve marked the initializer as optional because this syntax
is used for both declarations and definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210808 91177308-0d34-0410-b5e6-96231b3b80d8
The armv7-windows-itanium environment is nearly identical to the MSVC ABI. It
has a few divergences, mostly revolving around the use of the Itanium ABI for
C++. VLA support is one of the extensions that are amongst the set of the
extensions.
This adds support for proper VLA emission for this environment. This is
somewhat similar to the handling for __chkstk emission on X86 and the large
stack frame emission for ARM. The invocation style for chkstk is still
controlled via the -mcmodel flag to clang.
Make an explicit note that this is an extension.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210489 91177308-0d34-0410-b5e6-96231b3b80d8
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210367 91177308-0d34-0410-b5e6-96231b3b80d8
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210302 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
Late last year r191835 removed a largely unmaintained legacy PGO
infrastructure, but some of the docs were missed. Since these docs are
for things that don't actually exist anymore, they should be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210165 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8
Replace the crufty build-time configure checks for program paths with
equivalent runtime logic.
This lets users install graphing tools as needed without having to reconfigure
and rebuild LLVM, while eliminating a long chain of inappropriate compile
dependencies that included GUI programs and the windowing system.
Additional features:
* Support the OS X 'open' command to view graphs generated by any of the
Graphviz utilities. This is an alternative to the Graphviz OS X UI which is
no longer available on Mountain Lion.
* Produce informative log output upon failure to indicate which programs can
be installed to view graphs.
Ping me if this doesn't work for your particular environment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210001 91177308-0d34-0410-b5e6-96231b3b80d8
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209759 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
to have only some of the loop's memory instructions be annotated and still _help_
the loop carried dependence analysis.
This was discussed in the llvmdev ML (topic: "parallel loop metadata question").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209507 91177308-0d34-0410-b5e6-96231b3b80d8
Some bit-set fields used in ELF file headers in fact contain two parts.
The first one is a regular bit-field. The second one is an enumeraion.
For example ELF header `e_flags` for MIPS target might contain the
following values:
Bit-set values:
EF_MIPS_NOREORDER = 0x00000001
EF_MIPS_PIC = 0x00000002
EF_MIPS_CPIC = 0x00000004
EF_MIPS_ABI2 = 0x00000020
Enumeration:
EF_MIPS_ARCH_32 = 0x50000000
EF_MIPS_ARCH_64 = 0x60000000
EF_MIPS_ARCH_32R2 = 0x70000000
EF_MIPS_ARCH_64R2 = 0x80000000
For printing bit-sets we use the `yaml::IO::bitSetCase()`. It does not
support bit-set/enumeration combinations and prints too many flags from
an enumeration part. This patch fixes this problem. New method
`yaml::IO::maskedBitSetCase()` handle "enumeration" part of bitset
defined by provided mask.
Patch reviewed by Nick Kledzik and Sean Silva.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209504 91177308-0d34-0410-b5e6-96231b3b80d8
Change --functions option in llvm-symbolizer tool to accept
values "none", "short" or "linkage". Update the tests and docs
accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209050 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to put dynamic initializers for weak data into the same
comdat group as the data being initialized. This is necessary for MSVC
ABI compatibility. Once we have comdats for guard variables, we can use
the combination to help GlobalOpt fire more often for weak data with
guarded initialization on other platforms.
Reviewers: nlewycky
Differential Revision: http://reviews.llvm.org/D3499
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209015 91177308-0d34-0410-b5e6-96231b3b80d8
There are some interesting decisions based on non-obvious rationale in
the ARM64-BE NEON implementation - decent documentation is definitely required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208577 91177308-0d34-0410-b5e6-96231b3b80d8
Support for the intrinsics that read from and write to global named registers
is added for r1, r2 and r13 (depending on the subtarget).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208509 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200561.
This calling convention was an attempt to match the MSVC C++ ABI for
methods that return structures by value. This solution didn't scale,
because it would have required splitting every CC available on Windows
into two: one for methods and one for free functions.
Now that we can put sret on the second arg (r208453), and Clang does
that (r208458), revert this hack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208459 91177308-0d34-0410-b5e6-96231b3b80d8
Visibilities of `hidden` and `protected` are meaningless for symbols
with local linkage.
- Change the assembler to reject non-default visibility on symbols
with local linkage.
- Change the bitcode reader to auto-upgrade `hidden` and `protected`
to `default` when the linkage is local.
- Update LangRef.
<rdar://problem/16141113>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208263 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It concatenates two or more lists. In addition to the !strconcat semantics
the lists must have the same element type.
My overall aim is to make it easy to append to Instruction.Predicates
rather than override it. This can be done by concatenating lists passed as
arguments, or by concatenating lists passed in additional fields.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D3506
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208183 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208104 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
* Updated the documentation
* Added a test for >2 arguments
* Added a check for the lexical concatenation
* Made the existing test a bit stricter.
Reviewers: t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, llvm-commits
Differential Revision: http://reviews.llvm.org/D3485
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207865 91177308-0d34-0410-b5e6-96231b3b80d8
Given the following C code llvm currently generates suboptimal code for
x86-64:
__m128 bss4( const __m128 *ptr, size_t i, size_t j )
{
float f = ptr[i][j];
return (__m128) { f, f, f, f };
}
=================================================
define <4 x float> @_Z4bss4PKDv4_fmm(<4 x float>* nocapture readonly %ptr, i64 %i, i64 %j) #0 {
%a1 = getelementptr inbounds <4 x float>* %ptr, i64 %i
%a2 = load <4 x float>* %a1, align 16, !tbaa !1
%a3 = trunc i64 %j to i32
%a4 = extractelement <4 x float> %a2, i32 %a3
%a5 = insertelement <4 x float> undef, float %a4, i32 0
%a6 = insertelement <4 x float> %a5, float %a4, i32 1
%a7 = insertelement <4 x float> %a6, float %a4, i32 2
%a8 = insertelement <4 x float> %a7, float %a4, i32 3
ret <4 x float> %a8
}
=================================================
shlq $4, %rsi
addq %rdi, %rsi
movslq %edx, %rax
vbroadcastss (%rsi,%rax,4), %xmm0
retq
=================================================
The movslq is uneeded, but is present because of the trunc to i32 and then
sext back to i64 that the backend adds for vbroadcastss.
We can't remove it because it changes the meaning. The IR that clang
generates is already suboptimal. What clang really should emit is:
%a4 = extractelement <4 x float> %a2, i64 %j
This patch makes that legal. A separate patch will teach clang to do it.
Differential Revision: http://reviews.llvm.org/D3519
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207801 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the stack lowering emission of the stack probe function for
Windows on ARM. The stack on Windows on ARM is a dynamically paged stack where
any page allocation which crosses a page boundary of the following guard page
will cause a page fault. This page fault must be handled by the kernel to
ensure that the page is faulted in. If this does not occur and a write access
any memory beyond that, the page fault will go unserviced, resulting in an
abnormal program termination.
The watermark for the stack probe appears to be at 4080 bytes (for
accommodating the stack guard canaries and stack alignment) when SSP is
enabled. Otherwise, the stack probe is emitted on the page size boundary of
4096 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207615 91177308-0d34-0410-b5e6-96231b3b80d8