(only happens when using the -promote-elements option).
The correct legalization order is to first try to promote element. Next, we try
to widen vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132648 91177308-0d34-0410-b5e6-96231b3b80d8
then we don't want to set the destination in the indirect branch to the
destination. This is because the indirect branch needs its destinations to have
had their block addresses taken. This isn't so of the new critical edge that's
split during this process. If it turns out that the destination block has only
one predecessor, and that being a BB with an indirect branch, then it won't be
marked as 'used' and may be removed.
PR10072
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132638 91177308-0d34-0410-b5e6-96231b3b80d8
redundant with partially-aliasing loads.
When computing what portion of a clobbering load value is needed,
it doesn't consider phi-translation which may have occurred
between the clobbing load and the redundant load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132631 91177308-0d34-0410-b5e6-96231b3b80d8
A TableGen backend can define how certain classes can be expanded into
ordered sets of defs, typically by evaluating a specific field in the
record. The SetTheory class can then evaluate DAG expressions that refer
to these named sets.
A number of standard set and list operations are predefined, and the
backend can add more specialized operators if needed. The -print-sets
backend is used by SetTheory.td to provide examples.
This is intended to simplify how register classes are defined:
def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132621 91177308-0d34-0410-b5e6-96231b3b80d8
BranchProbabilityInfo provides an interface for IR passes to query the
likelihood that control follows a CFG edge. This patch provides an
initial implementation of static branch predication that will populate
BranchProbabilityInfo for branches with no external profile
information using very simple heuristics. It currently isn't hooked up
to any external profile data, so static prediction does all the work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132613 91177308-0d34-0410-b5e6-96231b3b80d8
queries in the case of a DAG, where a query reaches a node
visited earlier, but it's not on a cycle. This avoids
MayAlias results in cases where BasicAA is expected to
return MustAlias or PartialAlias in order to protect TBAA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132609 91177308-0d34-0410-b5e6-96231b3b80d8
Materializing the stack pointer update before a call requires a scratch
register that may not be available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132601 91177308-0d34-0410-b5e6-96231b3b80d8
of reserved registers.
Use RegisterClassInfo in RABasic as well. This slightly changes som
allocation orders because RegisterClassInfo puts CSR aliases last.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132581 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, these aliases would be ordered alphabetically. (BH, BL)
Print out the computed allocation orders.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132580 91177308-0d34-0410-b5e6-96231b3b80d8
addressing mode problem mentioned in r132559.
Backend part of rdar://9037836 and part of rdar://9119939
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132561 91177308-0d34-0410-b5e6-96231b3b80d8
- Check for MTCTR8 in addition to MTCTR when looking up a hazard.
- When lowering an indirect call use CTR8 when targeting 64bit.
- Introduce BCTR8 that uses CTR8 and use it on 64bit when expanding ISD::BRIND.
The last change fixes PR8487. With those changes, we are able to compile a
running "ls" and "sh" on FreeBSD/PowerPC64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132552 91177308-0d34-0410-b5e6-96231b3b80d8
which edge to split by pred/succ pair, which means that we can end up splitting
the wrong edge (by case value) in the switch statement entirely. Fixes PR10031!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132535 91177308-0d34-0410-b5e6-96231b3b80d8
the handler's data area is similar to a DWARF-format LSDA. (It is, in fact,
a 32-bit pointer to the personality routine followed by the DWARF LSDA.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132532 91177308-0d34-0410-b5e6-96231b3b80d8
Added asserts whenever attempting to use a potentially
uninitialized pass. This helps people trying to develop a new pass and
people trying to understand the bug reports filed by the former people.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132520 91177308-0d34-0410-b5e6-96231b3b80d8
When compiling a program with lots of small functions like
483.xalancbmk, this makes RAFast 11% faster.
Add some comments to clarify the difference between unallocatable and
reserved registers. It's quite subtle.
The fast register allocator depends on EFLAGS' not being allocatable on
x86. That way it can completely avoid tracking liveness, and it won't
mind when there are multiple uses of a single def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132514 91177308-0d34-0410-b5e6-96231b3b80d8