when building llvm. This saves quite a bit of time and space when
linking. Please report any problems via bugzilla.
Caveats:
a) This will only work on linux
b) This requires a fairly new binutils
c) This requires a fairly new gdb
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184808 91177308-0d34-0410-b5e6-96231b3b80d8
This is really ugly, but it is no worse than what we have in clang right now and
it is better to get it working first and clean/optimize it afterwards.
Will be tested from clang in the next patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184802 91177308-0d34-0410-b5e6-96231b3b80d8
command line. Change the darwin universal binary options to
be TargetCommonOpts so that they'll be passed to the linker since
-arch at least is still needed.
Someone on darwin with a buildit based build should probably verify
that this doesn't break anything there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184793 91177308-0d34-0410-b5e6-96231b3b80d8
Representing enumerators by int64 instead of uint64 for now. At some
point we need to address the underlying issue of representation
depending on the specific enumeration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184761 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the predicted forms of branches (+/-).
There are three cases to consider:
- Branches using a PPC::Predicate code
For these, I've added new PPC::Predicate codes corresponding
to the BO values for predicted branch forms, and updated insn
printing to print them correctly. I've also added new aliases
for the asm parser matching the new forms.
- bt/bf
I've added new aliases matching to gBC etc.
- bd(n)z variants
I've added new instruction patterns for the predicted forms.
In all cases, the new patterns are used for the asm parser only.
(The new infrastructure ought to be sufficient to allow use by
the compiler too at some point.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184754 91177308-0d34-0410-b5e6-96231b3b80d8
All of LLVM's Python scripts only support Python 2 for widely understood
reasons.
Patch by Yonggang Luo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184732 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the bt/bf/bd(n)zt/bd(n)zf mnemonics as aliases for the
asm parser, resolving to the generic conditional patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184725 91177308-0d34-0410-b5e6-96231b3b80d8
This should hopefully have fixed the stage2/stage3 miscompare on the dragonegg
testers.
"LoopVectorize: Use the dependence test utility class
We now no longer need alias analysis - the cases that alias analysis would
handle are now handled as accesses with a large dependence distance.
We can now vectorize loops with simple constant dependence distances.
for (i = 8; i < 256; ++i) {
a[i] = a[i+4] * a[i+8];
}
for (i = 8; i < 256; ++i) {
a[i] = a[i-4] * a[i-8];
}
We would be able to vectorize about 200 more loops (in many cases the cost model
instructs us no to) in the test suite now. Results on x86-64 are a wash.
I have seen one degradation in ammp. Interestingly, the function in which we
now vectorize a loop is never executed so we probably see some instruction
cache effects. There is a 2% improvement in h264ref. There is one or the other
TSCV loop kernel that speeds up.
radar://13681598"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184724 91177308-0d34-0410-b5e6-96231b3b80d8
This adds instruction patterns to cover the generic forms of
the conditional branch instructions. This allows the assembler
to support the generic mnemonics.
The compiler will still generate the various specific forms
of the instruction that were already supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184722 91177308-0d34-0410-b5e6-96231b3b80d8
There is currently only limited support for the "absolute" variants
of branch instructions. This patch adds support for the absolute
variants of all branches that are currently otherwise supported.
This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.
While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.
No change in code generation intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184721 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the bd(n)zl and bd(n)zlrl instructions.
The patterns are currently used for the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184720 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for the conditional variants of bl.
The pattern is currently used by the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184719 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for blrl and its conditional variants.
The patterns are (currently) used for the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184718 91177308-0d34-0410-b5e6-96231b3b80d8
The method significandParts() is a helper method meant to ease access to
APFloat's significand by allowing the user to not need to be aware of whether or
not the APFloat is using memory allocated in the instance itself or in an
external array.
This assert says that one can only access the significand of FiniteNonZero/NaN
floats. This makes it cumbersome and more importantly dangerous when one wishes
to zero out the significand of a zero/infinity value since one will have to deal
with the aforementioned quandary related to how the memory in APFloat is
allocated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184711 91177308-0d34-0410-b5e6-96231b3b80d8
In the context of APFloat, seeing a macro called convolve suggests that APFloat
is using said value in some sort of convolution somewhere in the source code.
This is misleading.
I also added a documentation comment to the macro.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184710 91177308-0d34-0410-b5e6-96231b3b80d8
When encoded to thumb, VFP instruction and VMOV/VDUP between scalar and
core registers, must have their predicate bit to 0b1110.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184707 91177308-0d34-0410-b5e6-96231b3b80d8
In thumb1, NOP is a pseudo-instruction equivalent to mov r8, r8.
However the disassembler should not use this alias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184703 91177308-0d34-0410-b5e6-96231b3b80d8
CGSCC pass manager. This should insulate the inlining decisions from the
vectorization decisions, however it may have both compile time and code
size problems so it is just an experimental option right now.
Adding this based on a discussion with Arnold and it seems at least
worth having this flag for us to both run some experiments to see if
this strategy is workable. It may solve some of the regressions seen
with the loop vectorizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184698 91177308-0d34-0410-b5e6-96231b3b80d8
There is some hope of eventually supporting a unified build with it, but
until then this lets me (and others) check it out in this location
without things breaking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184697 91177308-0d34-0410-b5e6-96231b3b80d8