We had been papering over a problem with location info for non-trivial
types passed by value by emitting their type as references (this caused
the debugger to interpret the location information correctly, but broke
the type of the function). r183329 corrected the type information but
lead to the debugger interpreting the pointer parameter as the value -
the debug info describing the location needed an extra dereference.
Use a new flag in DIVariable to add the extra indirection (either by
promoting an existing DW_OP_reg (parameter passed in a register) to
DW_OP_breg + 0 or by adding DW_OP_deref to an existing DW_OP_breg + n
(parameter passed on the stack).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184368 91177308-0d34-0410-b5e6-96231b3b80d8
Said assert assumes that ADDC will always have a glue node as its second
argument and is checked before we even know that we are actually performing the
relevant MLAL optimization. This is incorrect since on ARM we *CAN* codegen ADDC
with a use list based second argument. Thus to have both effects, I converted
the assert to a conditional check which if it fails we do not perform the
optimization.
In terms of tests I can not produce an ADDC from the IR level until I get in my
multiprecision optimization patch which is forthcoming. The tests for said patch
would cause this assert to fail implying that said tests will provide the
relevant tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184230 91177308-0d34-0410-b5e6-96231b3b80d8
"When assembling to the ARM instruction set, the .N qualifier produces
an assembler error and the .W qualifier has no effect."
In the pre-matcher handler in the asm parser the ".w" (wide) qualifier
when in ARM mode is now discarded. And an error message is now
produced when the ".n" (narrow) qualifier is used in ARM mode.
Test cases for these were added.
rdar://14064574
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184224 91177308-0d34-0410-b5e6-96231b3b80d8
When using a positive offset, literal loads where encoded
as if it was negative, because:
- The sign bit was not assigned to an operand
- The addrmode_imm12 operand was not encoding the sign bit correctly
This patch also makes the assembler look at the .w/.n specifier for
loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184182 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes two previous issues:
- Negative offsets were not correctly disassembled
- The decoded opcodes were not the right one
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184180 91177308-0d34-0410-b5e6-96231b3b80d8
Someone may want to do something crazy, like replace these objects if they
change or something.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184175 91177308-0d34-0410-b5e6-96231b3b80d8
Frame index handling is now target-agnostic, so delete the target hooks
for creation & asm printing of target-specific addressing in DBG_VALUEs
and any related functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184067 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than using the full power of target-specific addressing modes in
DBG_VALUEs with Frame Indicies, simply use Frame Index + Offset. This
reduces the complexity of debug info handling down to two
representations of values (reg+offset and frame index+offset) rather
than three or four.
Ideally we could ensure that frame indicies had been eliminated by the
time we reached an assembly or dwarf generation, but I haven't spent the
time to figure out where the FIs are leaking through into that & whether
there's a good place to convert them. Some FI+offset=>reg+offset
conversion is done (see PrologEpilogInserter, for example) which is
necessary for some SelectionDAG assumptions about registers, I believe,
but it might be possible to make this a more thorough conversion &
ensure there are no remaining FIs no matter how instruction selection
is performed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184066 91177308-0d34-0410-b5e6-96231b3b80d8
Replace the ill-defined MinLatency and ILPWindow properties with
with straightforward buffer sizes:
MCSchedMode::MicroOpBufferSize
MCProcResourceDesc::BufferSize
These can be used to more precisely model instruction execution if desired.
Disabled some misched tests temporarily. They'll be reenabled in a few commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184032 91177308-0d34-0410-b5e6-96231b3b80d8
This is a resubmit of r182877, which was reverted because it broken
MCJIT tests on ARM. The patch leaves MCJIT on ARM as it was before: only
enabled for iOS. I've CC'ed people from the original review and revert.
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl, but not MCJIT.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of lnt test-suite on A15 hardware with --optimize-option=-O0
and all the tests pass. All the tests also pass on x86 make check-all. I
also re-ran the check-all tests that failed on ARM, and they all seem to
pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183966 91177308-0d34-0410-b5e6-96231b3b80d8
Sign- and zero-extension folding was slightly incorrect because it wasn't checking that the shift on extensions was zero. Further, I recently added AND rd, rn, #255 as a form of 8-bit zero extension, and failed to add the folding code for it.
This patch fixes both issues.
This patch fixes both, and the test should remain the same:
test/CodeGen/ARM/fast-isel-fold.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183794 91177308-0d34-0410-b5e6-96231b3b80d8
Negative zero is returned by the primary expression parser as INT32_MIN, so all that the method needs to do is to accept this value.
Behavior already present for Thumb2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183734 91177308-0d34-0410-b5e6-96231b3b80d8
- Don't use assert(0), or tests may pass or fail according to assertions.
- For now, The tests are marked as XFAIL for win32 hosts.
FIXME: Could we avoid XFAIL to specify triple in the RUN lines?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183728 91177308-0d34-0410-b5e6-96231b3b80d8
Some ARM CPUs only support ARM mode (ancient v4 ones, for example) and some
only support Thumb mode (M-class ones currently). This makes sure such CPUs
default to the correct mode and makes the AsmParser diagnose an attempt to
switch modes incorrectly.
rdar://14024354
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183710 91177308-0d34-0410-b5e6-96231b3b80d8
Changes to ARM unwind opcode assembler:
* Fix multiple .save or .vsave directives. Besides, the
order is preserved now.
* For the directives which will generate multiple opcodes,
such as ".save {r0-r11}", the order of the unwind opcode
is fixed now, i.e. the registers with less encoding value
are popped first.
* Fix the $sp offset calculation. Now, we can use the
.setfp, .pad, .save, and .vsave directives at any order.
Changes to test cases:
* Add test cases to check the order of multiple opcodes
for the .save directive.
* Fix the incorrect $sp offset in the test case. The
stack pointer offset specified in the test case was
incorrect. (Changed test cases: ehabi-mc-section.ll and
ehabi-mc.ll)
* The opcode to restore $sp are slightly reordered. The
behavior are not changed, and the new output is same
as the output of GNU as. (Changed test cases:
eh-directive-pad.s and eh-directive-setfp.s)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183627 91177308-0d34-0410-b5e6-96231b3b80d8
The register classes when emitting loads weren't quite restricting enough, leading to MI verification failure on the result register.
These are new failures that weren't there the first time I tried enabling ARM FastISel for new targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183624 91177308-0d34-0410-b5e6-96231b3b80d8
Handle the case when the disassembler table can't tell
the difference between some encodings of QADD and CPS.
Add some necessary safe guards in CPS decoding as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183610 91177308-0d34-0410-b5e6-96231b3b80d8
My recent ARM FastISel patch exposed this bug:
http://llvm.org/bugs/show_bug.cgi?id=16178
The root cause is that it can't select integer sext/zext pre-ARMv6 and
asserts out.
The current integer sext/zext code doesn't handle other cases gracefully
either, so this patch makes it handle all sext and zext from i1/i8/i16
to i8/i16/i32, with and without ARMv6, both in Thumb and ARM mode. This
should fix the bug as well as make FastISel faster because it bails to
SelectionDAG less often. See fastisel-ext.patch for this.
fastisel-ext-tests.patch changes current tests to always use reg-imm AND
for 8-bit zext instead of UXTB. This simplifies code since it is
supported on ARMv4t and later, and at least on A15 both should perform
exactly the same (both have exec 1 uop 1, type I).
2013-05-31-char-shift-crash.ll is a bitcode version of the above bug
16178 repro.
fast-isel-ext.ll tests all sext/zext combinations that ARM FastISel
should now handle.
Note that my ARM FastISel enabling patch was reverted due to a separate
failure when dealing with MCJIT, I'll fix this second failure and then
turn FastISel on again for non-iOS ARM targets.
I've tested "make check-all" on my x86 box, and "lnt test-suite" on A15
hardware.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183551 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply 183270 again (because three is a magic number).
This should now no longer seg fault after r183459.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183464 91177308-0d34-0410-b5e6-96231b3b80d8