Implement iterator::erase() in a simple version that erases nodes when they
become empty, but doesn't try to redistribute elements among siblings for better
packing.
Handle coalescing across leaf nodes which may require erasing entries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120226 91177308-0d34-0410-b5e6-96231b3b80d8
by my recent GVN improvement. Looking through a single layer of
PHI nodes when attempting to sink GEPs, we need to iteratively
look through arbitrary PHI nests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120202 91177308-0d34-0410-b5e6-96231b3b80d8
situations where on the common path an API can return a pointer to some direct
memory, but which on an exceptional path may need to return a pointer to a
temporary struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120201 91177308-0d34-0410-b5e6-96231b3b80d8
independent information on the Mach object format, and move some stuff from
MachObjectWriter.cpp there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120186 91177308-0d34-0410-b5e6-96231b3b80d8
- Double the vector's capacity when growing to avoid unneeccesary reallocation.
- Do the reallocation with realloc(3) which can expand the memory in place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120183 91177308-0d34-0410-b5e6-96231b3b80d8
The path also holds a reference to the root node, and that allows important
iterator accessors like start() and stop() to have no conditional code. (When
the compiler is clever enough to remove it.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120165 91177308-0d34-0410-b5e6-96231b3b80d8
Based on TR2/boost filesystem (v3) API, but modified to remove exceptions.
Do not include this file directly, when it is ready, it will be included by
include/llvm/System/Path.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120102 91177308-0d34-0410-b5e6-96231b3b80d8
to use lowercase letters for the start of most
method names and to replace some method names
with more descriptive names (e.g., "getLeft()"
instead of "Left()"). No real functionality
change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120070 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't quite work yet because the calls to treeDecrement and treeIncrement
operate at the leaf level, not on pathNode(Level) as required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120068 91177308-0d34-0410-b5e6-96231b3b80d8
are constant. There was in fact one exception to this (phi nodes) - so
remove that exception (InstructionSimplify handles this so there should
be no loss).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120015 91177308-0d34-0410-b5e6-96231b3b80d8
destination location of a memcpy/memmove. I'm not clear about whether
TBAA works on these, so I'm leaving it out for now. Dan, please revisit
this when convenient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119928 91177308-0d34-0410-b5e6-96231b3b80d8
allowing the memcpy to be eliminated.
Unfortunately, the requirements on byval's without explicit
alignment are really weak and impossible to predict in the
mid-level optimizer, so this doesn't kick in much with current
frontends. The fix is to change clang to set alignment on all
byval arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119916 91177308-0d34-0410-b5e6-96231b3b80d8
so don't claim they are. They are allocated using DAG.getNode, so attempts
to access MemSDNode fields results in reading off the end of the allocated
memory. This fixes crashes with "llc -debug" due to debug code trying to
print MemSDNode fields for these barrier nodes (since the crashes are not
deterministic, use valgrind to see this). Add some nasty checking to try
to catch this kind of thing in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119901 91177308-0d34-0410-b5e6-96231b3b80d8
It is now possible to navigate the B+-tree using NodeRef::subtree() and
NodeRef::size() without knowing the key and value template types used in the
tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119880 91177308-0d34-0410-b5e6-96231b3b80d8
that the noderefs are the first member in the object.
This is in preparation of detemplatization of tree navigation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119879 91177308-0d34-0410-b5e6-96231b3b80d8
Key and value objects may not be destructed instantly when they are erased from
the container, but they will be destructed eventually by the IntervalMap
destructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119873 91177308-0d34-0410-b5e6-96231b3b80d8
llvm/include/llvm/ADT/IntervalMap.h:334: error: '((llvm::IntervalMapImpl::DesiredNodeBytes / static_cast<unsigned int>(((2 * sizeof (KeyT)) + sizeof (ValT)))) >? 3u)' is not a valid template argument for type 'unsigned int' because it is a non-constant expression
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119790 91177308-0d34-0410-b5e6-96231b3b80d8
This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.
Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.
The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.
The IntervalMap is initially intended to be used with SlotIndex intervals for:
- Backing store for LiveIntervalUnion that is smaller and faster than std::set.
- Backing store for LiveInterval with less overhead than std::vector for typical
intervals and O(N log N) merging of large intervals. 99% of virtual registers
need 4 entries or less and would benefit from the small object optimization.
- Backing store for LiveDebugVariable which doesn't exist yet, but will track
debug variables during register allocation.
This is a work in progress. Missing items are:
- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119787 91177308-0d34-0410-b5e6-96231b3b80d8
MCStreamer instead of just MCObjectStreamer. Address changes cannot
be as efficient as we have to use DW_LNE_set_addres, but at least
most of the logic is shared.
This will be used so that, with CodeGen still using EmitDwarfLocDirective,
llvm-gcc is able to produce debug_line sections without needing an
assembler that supports .loc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119777 91177308-0d34-0410-b5e6-96231b3b80d8
This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.
Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.
The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.
The IntervalMap is initially intended to be used with SlotIndex intervals for:
- Backing store for LiveIntervalUnion that is smaller and faster than std::set.
- Backing store for LiveInterval with less overhead than std::vector for typical
intervals and O(N log N) merging of large intervals. 99% of virtual registers
need 4 entries or less and would benefit from the small object optimization.
- Backing store for LiveDebugVariable which doesn't exist yet, but will track
debug variables during register allocation.
This is a work in progress. Missing items are:
- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119772 91177308-0d34-0410-b5e6-96231b3b80d8
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119727 91177308-0d34-0410-b5e6-96231b3b80d8
The attached patch fixes IRBuilder and the NoFolder class so that when
NoFolder is used the instructions it generates are treated just like
the ones IRBuilder creates directly (insert into block, assign them a
name and debug info, as applicable).
It does this by
1) having NoFolder return Instruction*s instead of Value*s,
2) having IRBuilder call Insert(Value, Name) on values obtained from
the folder like it does on instructions it creates directly, and
3) adding an Insert(Constant*, const Twine& = "") overload which just
returns the constant so that the other folders shouldn't have any
extra overhead as long as inlining is enabled.
While I was there, I also added some missing (CreateFNeg and various
Create*Cast) methods to NoFolder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119614 91177308-0d34-0410-b5e6-96231b3b80d8
and testing is easier. A good example is the unknown-location.ll test that
now can just look for ".loc 1 0 0". We also don't use a DW_LNE_set_address for
every address change anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119613 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these maps may merge in the future, but for now it's convenient to have
a utility function for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119587 91177308-0d34-0410-b5e6-96231b3b80d8
memoize the results. This improves compile time in code which highly complex
expressions which get queried many times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119584 91177308-0d34-0410-b5e6-96231b3b80d8
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119548 91177308-0d34-0410-b5e6-96231b3b80d8
instructions out of InstCombine and into InstructionSimplify. While
there, introduce an m_AllOnes pattern to simplify matching with integers
and vectors with all bits equal to one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119536 91177308-0d34-0410-b5e6-96231b3b80d8
simplified to itself (this can only happen in unreachable blocks).
Change it to return null instead. Hopefully this will fix some
buildbot failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119490 91177308-0d34-0410-b5e6-96231b3b80d8
cookie argument to the SourceMgr diagnostic stuff. This cleanly separates
LLVMContext's inlineasm handler from the sourcemgr error handling
definition, increasing type safety and cleaning things up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119486 91177308-0d34-0410-b5e6-96231b3b80d8
class, uses DominatorTree which is an analysis. This change moves all of
the tricky hasConstantValue logic to SimplifyInstruction, and replaces it
with a very simple literal implementation. I already taught users of
hasConstantValue that need tricky stuff to use SimplifyInstruction instead.
I didn't update InlineFunction because the IR looks like it might be in a
funky state at the point it calls hasConstantValue, which makes calling
SimplifyInstruction dangerous since it can in theory do a lot of tricky
reasoning. This may be a pessimization, for example in the case where
all phi node operands are either undef or a fixed constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119459 91177308-0d34-0410-b5e6-96231b3b80d8
Next: Add support for the !HasDotLocAndDotFile case to the MCAsmStreamer
and then switch codegen to use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119384 91177308-0d34-0410-b5e6-96231b3b80d8
easier to debug, and to avoid complications when the CFG changes
in the middle of the instruction selection process.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119382 91177308-0d34-0410-b5e6-96231b3b80d8
The system API's will be shifted over to returning an error_code, and returning
other return values as out parameters to the function.
Code that needs to check error conditions will use the errc enum values which
are the same as the posix_errno defines (EBADF, E2BIG, etc...), and are
compatable with the error codes in WinError.h due to some magic in system_error.
An example would be:
if (error_code ec = KillEvil("Java")) { // error_code can be converted to bool.
handle_error(ec);
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119360 91177308-0d34-0410-b5e6-96231b3b80d8
over a phi node by applying it to each operand may be wrong if the
operation and the phi node are mutually interdependent (the testcase
has a simple example of this). So only do this transform if it would
be correct to perform the operation in each predecessor of the block
containing the phi, i.e. if the other operands all dominate the phi.
This should fix the FFMPEG snow.c regression reported by İsmail Dönmez.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119347 91177308-0d34-0410-b5e6-96231b3b80d8
variable if recursing fails to simplify it.
Factor AliasedSymbol to be a method of MCSymbol.
Update MCAssembler::EvaluateFixup to match the change in
EvaluateAsRelocatableImpl.
Remove the WeakRefExpr hack, as the object writer now sees the weakref with
no extra effort needed.
Nothing else is using MCTargetExpr, but keep it for now.
Now that the ELF writer sees relocations with aliases, handle
.weak foo2
foo2:
.weak bar2
.set bar2,foo2
.quad bar2
the same way gas does and produce a relocation with bar2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119152 91177308-0d34-0410-b5e6-96231b3b80d8
This moves most of the isUsed logic to the MCSymbol itself. With this we
get a bit more relaxed about allowing definitions after uses: uses that
don't evaluate their argument immediately (jmp foo) are accepted.
ddunbar, this was the smallest compromise I could think of that lets us
accept gcc (and clang!) assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119144 91177308-0d34-0410-b5e6-96231b3b80d8
nodes to indicate when ha16/lo16 modifiers should be used. This lets
us pass PowerPC/indirectbr.ll.
The one annoying thing about this patch is that the MCSymbolExpr isn't
expressive enough to represent ha16(label1-label2) which we need on
PowerPC. I have a terrible hack in the meantime, but this will have
to be revisited at some point.
Last major conversion item left is global variable references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119105 91177308-0d34-0410-b5e6-96231b3b80d8
since it is trivial and will be shared between ppc and x86.
This substantially simplifies the X86 backend also.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119089 91177308-0d34-0410-b5e6-96231b3b80d8
on the operand, required for .o file writing and fixing
the PowerPC/mult-alt-generic-powerpc64.ll failure with the new
instprinter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119087 91177308-0d34-0410-b5e6-96231b3b80d8
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118840 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first small step towards using closed intervals for liveness instead
of the half-open intervals we're using now.
We want to be able to distinguish between a SlotIndex that represents a variable
being live-out of a basic block, and an index representing a variable live-in to
its successor.
That requires two separate indexes between blocks. One for live-outs and one for
live-ins.
With this change, getMBBEndIdx(MBB).getPrevSlot() becomes stable so it stays
greater than any instructions inserted at the end of MBB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118747 91177308-0d34-0410-b5e6-96231b3b80d8
references. For example, this allows gvn to eliminate the load in
this example:
void foo(int n, int* p, int *q) {
p[0] = 0;
p[1] = 1;
if (n) {
*q = p[0];
}
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118714 91177308-0d34-0410-b5e6-96231b3b80d8
benchmarks hitting an assertion.
Adds LiveIntervalUnion::collectInterferingVRegs.
Fixes "late spilling" by checking for any unspillable live vregs among
all physReg aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118701 91177308-0d34-0410-b5e6-96231b3b80d8
indivudal members holding the same data, to clarify the relationship
between NonLocalDepResult and NonLocalDepEntry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118686 91177308-0d34-0410-b5e6-96231b3b80d8