llvm-6502/lib/CodeGen
2012-04-01 07:24:23 +00:00
..
AsmPrinter Add support for objc property decls according to the page at: 2012-03-29 08:42:56 +00:00
SelectionDAG Teach CodeGen's version of computeMaskedBits to understand the range metadata. 2012-03-31 18:14:00 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
BranchFolding.cpp Branch folding may invalidate liveness. 2012-03-27 17:06:09 +00:00
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp
CMakeLists.txt Fix cmake 2012-03-07 05:46:04 +00:00
CodeGen.cpp
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp CriticalAntiDepBreaker: Replace a SmallSet of regs with a much denser BitVector. 2012-03-17 20:22:57 +00:00
CriticalAntiDepBreaker.h CriticalAntiDepBreaker: Replace a SmallSet of regs with a much denser BitVector. 2012-03-17 20:22:57 +00:00
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp Cleanup VLIWPacketizer to use the updated ScheduleDAGInstrs interface. 2012-03-07 23:01:09 +00:00
DwarfEHPrepare.cpp
EdgeBundles.cpp
ExecutionDepsFix.cpp
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp
InlineSpiller.cpp
InterferenceCache.cpp
InterferenceCache.h
IntrinsicLowering.cpp
JITCodeEmitter.cpp
LatencyPriorityQueue.cpp misched preparation: rename core scheduler methods for consistency. 2012-03-07 23:00:49 +00:00
LexicalScopes.cpp
LiveDebugVariables.cpp Tabs. 2012-03-15 21:33:39 +00:00
LiveDebugVariables.h
LiveInterval.cpp
LiveIntervalAnalysis.cpp misched: fix LiveInterval update for bottom-up scheduling 2012-03-21 04:12:16 +00:00
LiveIntervalUnion.cpp
LiveIntervalUnion.h
LiveRangeCalc.cpp
LiveRangeCalc.h
LiveRangeEdit.cpp
LiveRangeEdit.h
LiveStackAnalysis.cpp
LiveVariables.cpp Assert on SSA errors in LiveVariables. 2012-03-09 23:41:44 +00:00
LLVMBuild.txt
LLVMTargetMachine.cpp s/SjLjEHPass/SjLjEHPrepare/ 2012-03-13 20:04:21 +00:00
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp Allow removeLiveIn to be called with a register that isn't live-in. 2012-03-28 20:11:42 +00:00
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp
MachineBranchProbabilityInfo.cpp
MachineCodeEmitter.cpp
MachineCopyPropagation.cpp Use a SmallVector and linear lookup instead of a DenseSet - SourceMap values 2012-03-27 19:10:45 +00:00
MachineCSE.cpp
MachineDominators.cpp
MachineFunction.cpp Teach CodeGen's version of computeMaskedBits to understand the range metadata. 2012-03-31 18:14:00 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Teach CodeGen's version of computeMaskedBits to understand the range metadata. 2012-03-31 18:14:00 +00:00
MachineInstrBundle.cpp
MachineLICM.cpp Post-ra LICM should take care not to hoist an instruction that would clobber a 2012-03-27 01:50:58 +00:00
MachineLoopInfo.cpp
MachineLoopRanges.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp Add an MRI::tracksLiveness() flag. 2012-03-27 15:13:58 +00:00
MachineScheduler.cpp misched: Add finalizeScheduler to complete the target interface. 2012-04-01 07:24:23 +00:00
MachineSink.cpp
MachineSSAUpdater.cpp
MachineVerifier.cpp Enable machine code verification after PreSched2 passes. 2012-03-28 23:31:15 +00:00
Makefile
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Enable machine code verification in the entire code generator. 2012-03-28 23:54:28 +00:00
PeepholeOptimizer.cpp
PHIElimination.cpp
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp misched interface: rename Begin/End to RegionBegin/RegionEnd since they are not private. 2012-03-09 04:29:02 +00:00
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp Use uint16_t to store instruction implicit uses and defs. Reduces static data. 2012-03-08 08:22:45 +00:00
RegAllocGreedy.cpp
RegAllocPBQP.cpp Add a debug option to dump PBQP graphs during register allocation. 2012-03-26 23:07:23 +00:00
RegisterClassInfo.cpp
RegisterClassInfo.h
RegisterCoalescer.cpp
RegisterCoalescer.h Fixed typo in comment. 2012-03-13 05:43:30 +00:00
RegisterScavenging.cpp Add an MRI::tracksLiveness() flag. 2012-03-27 15:13:58 +00:00
RenderMachineFunction.cpp
RenderMachineFunction.h
ScheduleDAG.cpp misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. 2012-03-07 05:21:52 +00:00
ScheduleDAGInstrs.cpp ScheduleDAGInstrs: When adding uses we add them into a set that's empty at the beginning, no need to maintain another set for the added regs. 2012-03-16 17:38:19 +00:00
ScheduleDAGPrinter.cpp Cleanup in preparation for misched: Move DAG visualization logic. 2012-03-07 00:18:22 +00:00
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
SjLjEHPrepare.cpp Revert r152705, which reapplied r152486 as this appears to be causing failures 2012-03-16 01:04:00 +00:00
SlotIndexes.cpp
Spiller.cpp
Spiller.h
SpillPlacement.cpp
SpillPlacement.h
SplitKit.cpp
SplitKit.h
StackProtector.cpp
StackSlotColoring.cpp
StrongPHIElimination.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfoImpl.cpp Fixed commuteInstructions bug where if its called pre-regalloc the subreg indices weren't commuted 2012-03-28 17:02:22 +00:00
TargetLoweringObjectFileImpl.cpp
TargetOptionsImpl.cpp
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
VirtRegMap.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.