mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-24 06:30:19 +00:00
7d7d99622f
The old system was fairly convoluted: * A temporary label was created. * A single PROLOG_LABEL was created with it. * A few MCCFIInstructions were created with the same label. The semantics were that the cfi instructions were mapped to the PROLOG_LABEL via the temporary label. The output position was that of the PROLOG_LABEL. The temporary label itself was used only for doing the mapping. The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to one by holding an index into the CFI instructions of this function. I did consider removing MMI.getFrameInstructions completelly and having CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non trivial constructors and destructors and are somewhat big, so the this setup is probably better. The net result is that we don't create temporary labels that are never used. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8
1857 lines
61 KiB
C++
1857 lines
61 KiB
C++
//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the Hexagon implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonInstrInfo.h"
|
|
#include "Hexagon.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/DFAPacketizer.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#define GET_INSTRMAP_INFO
|
|
#include "HexagonGenInstrInfo.inc"
|
|
#include "HexagonGenDFAPacketizer.inc"
|
|
|
|
using namespace llvm;
|
|
|
|
///
|
|
/// Constants for Hexagon instructions.
|
|
///
|
|
const int Hexagon_MEMW_OFFSET_MAX = 4095;
|
|
const int Hexagon_MEMW_OFFSET_MIN = -4096;
|
|
const int Hexagon_MEMD_OFFSET_MAX = 8191;
|
|
const int Hexagon_MEMD_OFFSET_MIN = -8192;
|
|
const int Hexagon_MEMH_OFFSET_MAX = 2047;
|
|
const int Hexagon_MEMH_OFFSET_MIN = -2048;
|
|
const int Hexagon_MEMB_OFFSET_MAX = 1023;
|
|
const int Hexagon_MEMB_OFFSET_MIN = -1024;
|
|
const int Hexagon_ADDI_OFFSET_MAX = 32767;
|
|
const int Hexagon_ADDI_OFFSET_MIN = -32768;
|
|
const int Hexagon_MEMD_AUTOINC_MAX = 56;
|
|
const int Hexagon_MEMD_AUTOINC_MIN = -64;
|
|
const int Hexagon_MEMW_AUTOINC_MAX = 28;
|
|
const int Hexagon_MEMW_AUTOINC_MIN = -32;
|
|
const int Hexagon_MEMH_AUTOINC_MAX = 14;
|
|
const int Hexagon_MEMH_AUTOINC_MIN = -16;
|
|
const int Hexagon_MEMB_AUTOINC_MAX = 7;
|
|
const int Hexagon_MEMB_AUTOINC_MIN = -8;
|
|
|
|
// Pin the vtable to this file.
|
|
void HexagonInstrInfo::anchor() {}
|
|
|
|
HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
|
|
: HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
|
|
RI(ST), Subtarget(ST) {
|
|
}
|
|
|
|
|
|
/// isLoadFromStackSlot - If the specified machine instruction is a direct
|
|
/// load from a stack slot, return the virtual or physical register number of
|
|
/// the destination along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than loading from the stack slot.
|
|
unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
|
|
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case Hexagon::LDriw:
|
|
case Hexagon::LDrid:
|
|
case Hexagon::LDrih:
|
|
case Hexagon::LDrib:
|
|
case Hexagon::LDriub:
|
|
if (MI->getOperand(2).isFI() &&
|
|
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
|
|
FrameIndex = MI->getOperand(2).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// isStoreToStackSlot - If the specified machine instruction is a direct
|
|
/// store to a stack slot, return the virtual or physical register number of
|
|
/// the source reg along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than storing to the stack slot.
|
|
unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case Hexagon::STriw:
|
|
case Hexagon::STrid:
|
|
case Hexagon::STrih:
|
|
case Hexagon::STrib:
|
|
if (MI->getOperand(2).isFI() &&
|
|
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
|
|
FrameIndex = MI->getOperand(0).getIndex();
|
|
return MI->getOperand(2).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
unsigned
|
|
HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const{
|
|
|
|
int BOpc = Hexagon::JMP;
|
|
int BccOpc = Hexagon::JMP_t;
|
|
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
|
|
int regPos = 0;
|
|
// Check if ReverseBranchCondition has asked to reverse this branch
|
|
// If we want to reverse the branch an odd number of times, we want
|
|
// JMP_f.
|
|
if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
|
|
BccOpc = Hexagon::JMP_f;
|
|
regPos = 1;
|
|
}
|
|
|
|
if (FBB == 0) {
|
|
if (Cond.empty()) {
|
|
// Due to a bug in TailMerging/CFG Optimization, we need to add a
|
|
// special case handling of a predicated jump followed by an
|
|
// unconditional jump. If not, Tail Merging and CFG Optimization go
|
|
// into an infinite loop.
|
|
MachineBasicBlock *NewTBB, *NewFBB;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
MachineInstr *Term = MBB.getFirstTerminator();
|
|
if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
|
|
false)) {
|
|
MachineBasicBlock *NextBB =
|
|
std::next(MachineFunction::iterator(&MBB));
|
|
if (NewTBB == NextBB) {
|
|
ReverseBranchCondition(Cond);
|
|
RemoveBranch(MBB);
|
|
return InsertBranch(MBB, TBB, 0, Cond, DL);
|
|
}
|
|
}
|
|
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
|
|
} else {
|
|
BuildMI(&MBB, DL,
|
|
get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
|
|
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
|
|
|
|
return 2;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
TBB = NULL;
|
|
FBB = NULL;
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::instr_iterator I = MBB.instr_end();
|
|
if (I == MBB.instr_begin())
|
|
return false;
|
|
|
|
// A basic block may looks like this:
|
|
//
|
|
// [ insn
|
|
// EH_LABEL
|
|
// insn
|
|
// insn
|
|
// insn
|
|
// EH_LABEL
|
|
// insn ]
|
|
//
|
|
// It has two succs but does not have a terminator
|
|
// Don't know how to handle it.
|
|
do {
|
|
--I;
|
|
if (I->isEHLabel())
|
|
return true;
|
|
} while (I != MBB.instr_begin());
|
|
|
|
I = MBB.instr_end();
|
|
--I;
|
|
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.instr_begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
|
|
// Delete the JMP if it's equivalent to a fall-through.
|
|
if (AllowModify && I->getOpcode() == Hexagon::JMP &&
|
|
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
|
|
DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
|
|
I->eraseFromParent();
|
|
I = MBB.instr_end();
|
|
if (I == MBB.instr_begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
if (!isUnpredicatedTerminator(I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = I;
|
|
MachineInstr *SecondLastInst = NULL;
|
|
// Find one more terminator if present.
|
|
do {
|
|
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
|
|
if (!SecondLastInst)
|
|
SecondLastInst = I;
|
|
else
|
|
// This is a third branch.
|
|
return true;
|
|
}
|
|
if (I == MBB.instr_begin())
|
|
break;
|
|
--I;
|
|
} while(I);
|
|
|
|
int LastOpcode = LastInst->getOpcode();
|
|
|
|
bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
|
|
bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (LastInst && !SecondLastInst) {
|
|
if (LastOpcode == Hexagon::JMP) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
if (LastOpcode == Hexagon::ENDLOOP0) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
return false;
|
|
}
|
|
if (LastOpcodeHasJMP_c) {
|
|
TBB = LastInst->getOperand(1).getMBB();
|
|
if (LastOpcodeHasNot) {
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
}
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
return false;
|
|
}
|
|
// Otherwise, don't know what this is.
|
|
return true;
|
|
}
|
|
|
|
int SecLastOpcode = SecondLastInst->getOpcode();
|
|
|
|
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
|
|
bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
|
|
if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
|
|
TBB = SecondLastInst->getOperand(1).getMBB();
|
|
if (SecLastOpcodeHasNot)
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
|
|
// executed, so remove it.
|
|
if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with an ENDLOOP, and JMP, handle it.
|
|
if (SecLastOpcode == Hexagon::ENDLOOP0 &&
|
|
LastOpcode == Hexagon::JMP) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
int BOpc = Hexagon::JMP;
|
|
int BccOpc = Hexagon::JMP_t;
|
|
int BccOpcNot = Hexagon::JMP_f;
|
|
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin()) return 0;
|
|
--I;
|
|
if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
|
|
I->getOpcode() != BccOpcNot)
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) return 1;
|
|
--I;
|
|
if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
|
|
/// \brief For a comparison instruction, return the source registers in
|
|
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
|
|
/// compares against in CmpValue. Return true if the comparison instruction
|
|
/// can be analyzed.
|
|
bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
|
|
unsigned &SrcReg, unsigned &SrcReg2,
|
|
int &Mask, int &Value) const {
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
// Set mask and the first source register.
|
|
switch (Opc) {
|
|
case Hexagon::CMPEHexagon4rr:
|
|
case Hexagon::CMPEQri:
|
|
case Hexagon::CMPEQrr:
|
|
case Hexagon::CMPGT64rr:
|
|
case Hexagon::CMPGTU64rr:
|
|
case Hexagon::CMPGTUri:
|
|
case Hexagon::CMPGTUrr:
|
|
case Hexagon::CMPGTri:
|
|
case Hexagon::CMPGTrr:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
Mask = ~0;
|
|
break;
|
|
case Hexagon::CMPbEQri_V4:
|
|
case Hexagon::CMPbEQrr_sbsb_V4:
|
|
case Hexagon::CMPbEQrr_ubub_V4:
|
|
case Hexagon::CMPbGTUri_V4:
|
|
case Hexagon::CMPbGTUrr_V4:
|
|
case Hexagon::CMPbGTrr_V4:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
Mask = 0xFF;
|
|
break;
|
|
case Hexagon::CMPhEQri_V4:
|
|
case Hexagon::CMPhEQrr_shl_V4:
|
|
case Hexagon::CMPhEQrr_xor_V4:
|
|
case Hexagon::CMPhGTUri_V4:
|
|
case Hexagon::CMPhGTUrr_V4:
|
|
case Hexagon::CMPhGTrr_shl_V4:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
Mask = 0xFFFF;
|
|
break;
|
|
}
|
|
|
|
// Set the value/second source register.
|
|
switch (Opc) {
|
|
case Hexagon::CMPEHexagon4rr:
|
|
case Hexagon::CMPEQrr:
|
|
case Hexagon::CMPGT64rr:
|
|
case Hexagon::CMPGTU64rr:
|
|
case Hexagon::CMPGTUrr:
|
|
case Hexagon::CMPGTrr:
|
|
case Hexagon::CMPbEQrr_sbsb_V4:
|
|
case Hexagon::CMPbEQrr_ubub_V4:
|
|
case Hexagon::CMPbGTUrr_V4:
|
|
case Hexagon::CMPbGTrr_V4:
|
|
case Hexagon::CMPhEQrr_shl_V4:
|
|
case Hexagon::CMPhEQrr_xor_V4:
|
|
case Hexagon::CMPhGTUrr_V4:
|
|
case Hexagon::CMPhGTrr_shl_V4:
|
|
SrcReg2 = MI->getOperand(2).getReg();
|
|
return true;
|
|
|
|
case Hexagon::CMPEQri:
|
|
case Hexagon::CMPGTUri:
|
|
case Hexagon::CMPGTri:
|
|
case Hexagon::CMPbEQri_V4:
|
|
case Hexagon::CMPbGTUri_V4:
|
|
case Hexagon::CMPhEQri_V4:
|
|
case Hexagon::CMPhGTUri_V4:
|
|
SrcReg2 = 0;
|
|
Value = MI->getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
|
|
// Map Pd = Ps to Pd = or(Ps, Ps).
|
|
BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
|
|
DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
|
|
Hexagon::IntRegsRegClass.contains(SrcReg)) {
|
|
// We can have an overlap between single and double reg: r1:0 = r0.
|
|
if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
|
|
// r1:0 = r0
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
|
|
Hexagon::subreg_hireg))).addImm(0);
|
|
} else {
|
|
// r1:0 = r1 or no overlap.
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
|
|
Hexagon::subreg_loreg))).addReg(SrcReg);
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
|
|
Hexagon::subreg_hireg))).addImm(0);
|
|
}
|
|
return;
|
|
}
|
|
if (Hexagon::CRRegsRegClass.contains(DestReg) &&
|
|
Hexagon::IntRegsRegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
|
|
Hexagon::IntRegsRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
|
|
Hexagon::PredRegsRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::
|
|
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
unsigned SrcReg, bool isKill, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
|
|
DebugLoc DL = MBB.findDebugLoc(I);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(
|
|
MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
|
|
MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI),
|
|
Align);
|
|
|
|
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::STriw))
|
|
.addFrameIndex(FI).addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
|
|
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::STrid))
|
|
.addFrameIndex(FI).addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
|
|
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
|
|
.addFrameIndex(FI).addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
|
|
} else {
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::storeRegToAddr(
|
|
MachineFunction &MF, unsigned SrcReg,
|
|
bool isKill,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const
|
|
{
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::
|
|
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
unsigned DestReg, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL = MBB.findDebugLoc(I);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(
|
|
MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
|
|
MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI),
|
|
Align);
|
|
if (RC == &Hexagon::IntRegsRegClass) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
|
|
} else if (RC == &Hexagon::DoubleRegsRegClass) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
|
|
} else if (RC == &Hexagon::PredRegsRegClass) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
|
|
} else {
|
|
llvm_unreachable("Can't store this register to stack slot");
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const {
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
|
|
|
|
MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FI) const {
|
|
// Hexagon_TODO: Implement.
|
|
return(0);
|
|
}
|
|
|
|
unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
|
|
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *TRC;
|
|
if (VT == MVT::i1) {
|
|
TRC = &Hexagon::PredRegsRegClass;
|
|
} else if (VT == MVT::i32 || VT == MVT::f32) {
|
|
TRC = &Hexagon::IntRegsRegClass;
|
|
} else if (VT == MVT::i64 || VT == MVT::f64) {
|
|
TRC = &Hexagon::DoubleRegsRegClass;
|
|
} else {
|
|
llvm_unreachable("Cannot handle this register class");
|
|
}
|
|
|
|
unsigned NewReg = RegInfo.createVirtualRegister(TRC);
|
|
return NewReg;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
|
|
// Constant extenders are allowed only for V4 and above.
|
|
if (!Subtarget.hasV4TOps())
|
|
return false;
|
|
|
|
const MCInstrDesc &MID = MI->getDesc();
|
|
const uint64_t F = MID.TSFlags;
|
|
if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
|
|
return true;
|
|
|
|
// TODO: This is largely obsolete now. Will need to be removed
|
|
// in consecutive patches.
|
|
switch(MI->getOpcode()) {
|
|
// TFR_FI Remains a special case.
|
|
case Hexagon::TFR_FI:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// This returns true in two cases:
|
|
// - The OP code itself indicates that this is an extended instruction.
|
|
// - One of MOs has been marked with HMOTF_ConstExtended flag.
|
|
bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
|
|
// First check if this is permanently extended op code.
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
|
|
return true;
|
|
// Use MO operand flags to determine if one of MI's operands
|
|
// has HMOTF_ConstExtended flag set.
|
|
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
|
|
E = MI->operands_end(); I != E; ++I) {
|
|
if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
|
|
return MI->getDesc().isBranch();
|
|
}
|
|
|
|
bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
|
|
if (isNewValueJump(MI))
|
|
return true;
|
|
|
|
if (isNewValueStore(MI))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
|
|
return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
|
|
bool isPred = MI->getDesc().isPredicable();
|
|
|
|
if (!isPred)
|
|
return false;
|
|
|
|
const int Opc = MI->getOpcode();
|
|
|
|
switch(Opc) {
|
|
case Hexagon::TFRI:
|
|
return isInt<12>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::STrid:
|
|
case Hexagon::STrid_indexed:
|
|
return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::STriw:
|
|
case Hexagon::STriw_indexed:
|
|
case Hexagon::STriw_nv_V4:
|
|
return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::STrih:
|
|
case Hexagon::STrih_indexed:
|
|
case Hexagon::STrih_nv_V4:
|
|
return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::STrib:
|
|
case Hexagon::STrib_indexed:
|
|
case Hexagon::STrib_nv_V4:
|
|
return isUInt<6>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::LDrid:
|
|
case Hexagon::LDrid_indexed:
|
|
return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::LDriw:
|
|
case Hexagon::LDriw_indexed:
|
|
return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::LDrih:
|
|
case Hexagon::LDriuh:
|
|
case Hexagon::LDrih_indexed:
|
|
case Hexagon::LDriuh_indexed:
|
|
return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::LDrib:
|
|
case Hexagon::LDriub:
|
|
case Hexagon::LDrib_indexed:
|
|
case Hexagon::LDriub_indexed:
|
|
return isUInt<6>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::POST_LDrid:
|
|
return isShiftedInt<4,3>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::POST_LDriw:
|
|
return isShiftedInt<4,2>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::POST_LDrih:
|
|
case Hexagon::POST_LDriuh:
|
|
return isShiftedInt<4,1>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::POST_LDrib:
|
|
case Hexagon::POST_LDriub:
|
|
return isInt<4>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::STrib_imm_V4:
|
|
case Hexagon::STrih_imm_V4:
|
|
case Hexagon::STriw_imm_V4:
|
|
return (isUInt<6>(MI->getOperand(1).getImm()) &&
|
|
isInt<6>(MI->getOperand(2).getImm()));
|
|
|
|
case Hexagon::ADD_ri:
|
|
return isInt<8>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::ASLH:
|
|
case Hexagon::ASRH:
|
|
case Hexagon::SXTB:
|
|
case Hexagon::SXTH:
|
|
case Hexagon::ZXTB:
|
|
case Hexagon::ZXTH:
|
|
return Subtarget.hasV4TOps();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// This function performs the following inversiones:
|
|
//
|
|
// cPt ---> cNotPt
|
|
// cNotPt ---> cPt
|
|
//
|
|
unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
|
|
int InvPredOpcode;
|
|
InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
|
|
: Hexagon::getTruePredOpcode(Opc);
|
|
if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
|
|
return InvPredOpcode;
|
|
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unexpected predicated instruction");
|
|
case Hexagon::COMBINE_rr_cPt:
|
|
return Hexagon::COMBINE_rr_cNotPt;
|
|
case Hexagon::COMBINE_rr_cNotPt:
|
|
return Hexagon::COMBINE_rr_cPt;
|
|
|
|
// Dealloc_return.
|
|
case Hexagon::DEALLOC_RET_cPt_V4:
|
|
return Hexagon::DEALLOC_RET_cNotPt_V4;
|
|
case Hexagon::DEALLOC_RET_cNotPt_V4:
|
|
return Hexagon::DEALLOC_RET_cPt_V4;
|
|
}
|
|
}
|
|
|
|
// New Value Store instructions.
|
|
bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
|
|
return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
|
|
}
|
|
|
|
int HexagonInstrInfo::
|
|
getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
|
|
enum Hexagon::PredSense inPredSense;
|
|
inPredSense = invertPredicate ? Hexagon::PredSense_false :
|
|
Hexagon::PredSense_true;
|
|
int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
|
|
if (CondOpcode >= 0) // Valid Conditional opcode/instruction
|
|
return CondOpcode;
|
|
|
|
// This switch case will be removed once all the instructions have been
|
|
// modified to use relation maps.
|
|
switch(Opc) {
|
|
case Hexagon::TFRI_f:
|
|
return !invertPredicate ? Hexagon::TFRI_cPt_f :
|
|
Hexagon::TFRI_cNotPt_f;
|
|
case Hexagon::COMBINE_rr:
|
|
return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
|
|
Hexagon::COMBINE_rr_cNotPt;
|
|
|
|
// Word.
|
|
case Hexagon::STriw_f:
|
|
return !invertPredicate ? Hexagon::STriw_cPt :
|
|
Hexagon::STriw_cNotPt;
|
|
case Hexagon::STriw_indexed_f:
|
|
return !invertPredicate ? Hexagon::STriw_indexed_cPt :
|
|
Hexagon::STriw_indexed_cNotPt;
|
|
|
|
// DEALLOC_RETURN.
|
|
case Hexagon::DEALLOC_RET_V4:
|
|
return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
|
|
Hexagon::DEALLOC_RET_cNotPt_V4;
|
|
}
|
|
llvm_unreachable("Unexpected predicable instruction");
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::
|
|
PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Cond) const {
|
|
int Opc = MI->getOpcode();
|
|
assert (isPredicable(MI) && "Expected predicable instruction");
|
|
bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
|
|
(Cond[0].getImm() == 0));
|
|
|
|
// This will change MI's opcode to its predicate version.
|
|
// However, its operand list is still the old one, i.e. the
|
|
// non-predicate one.
|
|
MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
|
|
|
|
int oper = -1;
|
|
unsigned int GAIdx = 0;
|
|
|
|
// Indicates whether the current MI has a GlobalAddress operand
|
|
bool hasGAOpnd = false;
|
|
std::vector<MachineOperand> tmpOpnds;
|
|
|
|
// Indicates whether we need to shift operands to right.
|
|
bool needShift = true;
|
|
|
|
// The predicate is ALWAYS the FIRST input operand !!!
|
|
if (MI->getNumOperands() == 0) {
|
|
// The non-predicate version of MI does not take any operands,
|
|
// i.e. no outs and no ins. In this condition, the predicate
|
|
// operand will be directly placed at Operands[0]. No operand
|
|
// shift is needed.
|
|
// Example: BARRIER
|
|
needShift = false;
|
|
oper = -1;
|
|
}
|
|
else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
|
|
&& MI->getOperand(MI->getNumOperands()-1).isDef()
|
|
&& !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
|
|
// The non-predicate version of MI does not have any input operands.
|
|
// In this condition, we extend the length of Operands[] by one and
|
|
// copy the original last operand to the newly allocated slot.
|
|
// At this moment, it is just a place holder. Later, we will put
|
|
// predicate operand directly into it. No operand shift is needed.
|
|
// Example: r0=BARRIER (this is a faked insn used here for illustration)
|
|
MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
|
|
needShift = false;
|
|
oper = MI->getNumOperands() - 2;
|
|
}
|
|
else {
|
|
// We need to right shift all input operands by one. Duplicate the
|
|
// last operand into the newly allocated slot.
|
|
MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
|
|
}
|
|
|
|
if (needShift)
|
|
{
|
|
// Operands[ MI->getNumOperands() - 2 ] has been copied into
|
|
// Operands[ MI->getNumOperands() - 1 ], so we start from
|
|
// Operands[ MI->getNumOperands() - 3 ].
|
|
// oper is a signed int.
|
|
// It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
|
|
for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
|
|
{
|
|
MachineOperand &MO = MI->getOperand(oper);
|
|
|
|
// Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
|
|
// <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
|
|
// /\~
|
|
// /||\~
|
|
// ||
|
|
// Predicate Operand here
|
|
if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
|
|
break;
|
|
}
|
|
if (MO.isReg()) {
|
|
MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
|
|
MO.isImplicit(), MO.isKill(),
|
|
MO.isDead(), MO.isUndef(),
|
|
MO.isDebug());
|
|
}
|
|
else if (MO.isImm()) {
|
|
MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
|
|
}
|
|
else if (MO.isGlobal()) {
|
|
// MI can not have more than one GlobalAddress operand.
|
|
assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
|
|
|
|
// There is no member function called "ChangeToGlobalAddress" in the
|
|
// MachineOperand class (not like "ChangeToRegister" and
|
|
// "ChangeToImmediate"). So we have to remove them from Operands[] list
|
|
// first, and then add them back after we have inserted the predicate
|
|
// operand. tmpOpnds[] is to remember these operands before we remove
|
|
// them.
|
|
tmpOpnds.push_back(MO);
|
|
|
|
// Operands[oper] is a GlobalAddress operand;
|
|
// Operands[oper+1] has been copied into Operands[oper+2];
|
|
hasGAOpnd = true;
|
|
GAIdx = oper;
|
|
continue;
|
|
}
|
|
else {
|
|
assert(false && "Unexpected operand type");
|
|
}
|
|
}
|
|
}
|
|
|
|
int regPos = invertJump ? 1 : 0;
|
|
MachineOperand PredMO = Cond[regPos];
|
|
|
|
// [oper] now points to the last explicit Def. Predicate operand must be
|
|
// located at [oper+1]. See diagram above.
|
|
// This assumes that the predicate is always the first operand,
|
|
// i.e. Operands[0+numResults], in the set of inputs
|
|
// It is better to have an assert here to check this. But I don't know how
|
|
// to write this assert because findFirstPredOperandIdx() would return -1
|
|
if (oper < -1) oper = -1;
|
|
|
|
MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
|
|
PredMO.isImplicit(), false,
|
|
PredMO.isDead(), PredMO.isUndef(),
|
|
PredMO.isDebug());
|
|
|
|
MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
|
|
RegInfo.clearKillFlags(PredMO.getReg());
|
|
|
|
if (hasGAOpnd)
|
|
{
|
|
unsigned int i;
|
|
|
|
// Operands[GAIdx] is the original GlobalAddress operand, which is
|
|
// already copied into tmpOpnds[0].
|
|
// Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
|
|
// Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
|
|
// so we start from [GAIdx+2]
|
|
for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
|
|
tmpOpnds.push_back(MI->getOperand(i));
|
|
|
|
// Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
|
|
// It is very important that we always remove from the end of Operands[]
|
|
// MI->getNumOperands() is at least 2 if program goes to here.
|
|
for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
|
|
MI->RemoveOperand(i);
|
|
|
|
for (i = 0; i < tmpOpnds.size(); ++i)
|
|
MI->addOperand(tmpOpnds[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool
|
|
HexagonInstrInfo::
|
|
isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCycles,
|
|
unsigned ExtraPredCycles,
|
|
const BranchProbability &Probability) const {
|
|
return true;
|
|
}
|
|
|
|
|
|
bool
|
|
HexagonInstrInfo::
|
|
isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumTCycles,
|
|
unsigned ExtraTCycles,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumFCycles,
|
|
unsigned ExtraFCycles,
|
|
const BranchProbability &Probability) const {
|
|
return true;
|
|
}
|
|
|
|
// Returns true if an instruction is predicated irrespective of the predicate
|
|
// sense. For example, all of the following will return true.
|
|
// if (p0) R1 = add(R2, R3)
|
|
// if (!p0) R1 = add(R2, R3)
|
|
// if (p0.new) R1 = add(R2, R3)
|
|
// if (!p0.new) R1 = add(R2, R3)
|
|
bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
|
|
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
assert(isPredicated(MI));
|
|
return (!((F >> HexagonII::PredicatedFalsePos) &
|
|
HexagonII::PredicatedFalseMask));
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
|
|
// Make sure that the instruction is predicated.
|
|
assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
|
|
return (!((F >> HexagonII::PredicatedFalsePos) &
|
|
HexagonII::PredicatedFalseMask));
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
assert(isPredicated(MI));
|
|
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
|
|
assert(isPredicated(Opcode));
|
|
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
|
|
}
|
|
|
|
// Returns true, if a ST insn can be promoted to a new-value store.
|
|
bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
|
|
const HexagonRegisterInfo& QRI = getRegisterInfo();
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
return ((F >> HexagonII::mayNVStorePos) &
|
|
HexagonII::mayNVStoreMask &
|
|
QRI.Subtarget.hasV4TOps());
|
|
}
|
|
|
|
bool
|
|
HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
|
|
std::vector<MachineOperand> &Pred) const {
|
|
for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
|
|
MachineOperand MO = MI->getOperand(oper);
|
|
if (MO.isReg() && MO.isDef()) {
|
|
const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
|
|
if (RC == &Hexagon::PredRegsRegClass) {
|
|
Pred.push_back(MO);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool
|
|
HexagonInstrInfo::
|
|
SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
|
|
const SmallVectorImpl<MachineOperand> &Pred2) const {
|
|
// TODO: Fix this
|
|
return false;
|
|
}
|
|
|
|
|
|
//
|
|
// We indicate that we want to reverse the branch by
|
|
// inserting a 0 at the beginning of the Cond vector.
|
|
//
|
|
bool HexagonInstrInfo::
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
|
|
Cond.erase(Cond.begin());
|
|
} else {
|
|
Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::
|
|
isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
|
|
const BranchProbability &Probability) const {
|
|
return (NumInstrs <= 4);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case Hexagon::DEALLOC_RET_V4 :
|
|
case Hexagon::DEALLOC_RET_cPt_V4 :
|
|
case Hexagon::DEALLOC_RET_cNotPt_V4 :
|
|
case Hexagon::DEALLOC_RET_cdnPnt_V4 :
|
|
case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
|
|
case Hexagon::DEALLOC_RET_cdnPt_V4 :
|
|
case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::
|
|
isValidOffset(const int Opcode, const int Offset) const {
|
|
// This function is to check whether the "Offset" is in the correct range of
|
|
// the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
|
|
// inserted to calculate the final address. Due to this reason, the function
|
|
// assumes that the "Offset" has correct alignment.
|
|
// We used to assert if the offset was not properly aligned, however,
|
|
// there are cases where a misaligned pointer recast can cause this
|
|
// problem, and we need to allow for it. The front end warns of such
|
|
// misaligns with respect to load size.
|
|
|
|
switch(Opcode) {
|
|
|
|
case Hexagon::LDriw:
|
|
case Hexagon::LDriw_indexed:
|
|
case Hexagon::LDriw_f:
|
|
case Hexagon::STriw_indexed:
|
|
case Hexagon::STriw:
|
|
case Hexagon::STriw_f:
|
|
return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMW_OFFSET_MAX);
|
|
|
|
case Hexagon::LDrid:
|
|
case Hexagon::LDrid_indexed:
|
|
case Hexagon::LDrid_f:
|
|
case Hexagon::STrid:
|
|
case Hexagon::STrid_indexed:
|
|
case Hexagon::STrid_f:
|
|
return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMD_OFFSET_MAX);
|
|
|
|
case Hexagon::LDrih:
|
|
case Hexagon::LDriuh:
|
|
case Hexagon::STrih:
|
|
return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMH_OFFSET_MAX);
|
|
|
|
case Hexagon::LDrib:
|
|
case Hexagon::STrib:
|
|
case Hexagon::LDriub:
|
|
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMB_OFFSET_MAX);
|
|
|
|
case Hexagon::ADD_ri:
|
|
case Hexagon::TFR_FI:
|
|
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_ADDI_OFFSET_MAX);
|
|
|
|
case Hexagon::MemOPw_ADDi_V4 :
|
|
case Hexagon::MemOPw_SUBi_V4 :
|
|
case Hexagon::MemOPw_ADDr_V4 :
|
|
case Hexagon::MemOPw_SUBr_V4 :
|
|
case Hexagon::MemOPw_ANDr_V4 :
|
|
case Hexagon::MemOPw_ORr_V4 :
|
|
return (0 <= Offset && Offset <= 255);
|
|
|
|
case Hexagon::MemOPh_ADDi_V4 :
|
|
case Hexagon::MemOPh_SUBi_V4 :
|
|
case Hexagon::MemOPh_ADDr_V4 :
|
|
case Hexagon::MemOPh_SUBr_V4 :
|
|
case Hexagon::MemOPh_ANDr_V4 :
|
|
case Hexagon::MemOPh_ORr_V4 :
|
|
return (0 <= Offset && Offset <= 127);
|
|
|
|
case Hexagon::MemOPb_ADDi_V4 :
|
|
case Hexagon::MemOPb_SUBi_V4 :
|
|
case Hexagon::MemOPb_ADDr_V4 :
|
|
case Hexagon::MemOPb_SUBr_V4 :
|
|
case Hexagon::MemOPb_ANDr_V4 :
|
|
case Hexagon::MemOPb_ORr_V4 :
|
|
return (0 <= Offset && Offset <= 63);
|
|
|
|
// LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
|
|
// any size. Later pass knows how to handle it.
|
|
case Hexagon::STriw_pred:
|
|
case Hexagon::LDriw_pred:
|
|
return true;
|
|
|
|
case Hexagon::LOOP0_i:
|
|
return isUInt<10>(Offset);
|
|
|
|
// INLINEASM is very special.
|
|
case Hexagon::INLINEASM:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("No offset range is defined for this opcode. "
|
|
"Please define it in the above switch statement!");
|
|
}
|
|
|
|
|
|
//
|
|
// Check if the Offset is a valid auto-inc imm by Load/Store Type.
|
|
//
|
|
bool HexagonInstrInfo::
|
|
isValidAutoIncImm(const EVT VT, const int Offset) const {
|
|
|
|
if (VT == MVT::i64) {
|
|
return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMD_AUTOINC_MAX &&
|
|
(Offset & 0x7) == 0);
|
|
}
|
|
if (VT == MVT::i32) {
|
|
return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMW_AUTOINC_MAX &&
|
|
(Offset & 0x3) == 0);
|
|
}
|
|
if (VT == MVT::i16) {
|
|
return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMH_AUTOINC_MAX &&
|
|
(Offset & 0x1) == 0);
|
|
}
|
|
if (VT == MVT::i8) {
|
|
return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMB_AUTOINC_MAX);
|
|
}
|
|
llvm_unreachable("Not an auto-inc opc!");
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::
|
|
isMemOp(const MachineInstr *MI) const {
|
|
// return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
|
|
|
|
switch (MI->getOpcode())
|
|
{
|
|
default: return false;
|
|
case Hexagon::MemOPw_ADDi_V4 :
|
|
case Hexagon::MemOPw_SUBi_V4 :
|
|
case Hexagon::MemOPw_ADDr_V4 :
|
|
case Hexagon::MemOPw_SUBr_V4 :
|
|
case Hexagon::MemOPw_ANDr_V4 :
|
|
case Hexagon::MemOPw_ORr_V4 :
|
|
case Hexagon::MemOPh_ADDi_V4 :
|
|
case Hexagon::MemOPh_SUBi_V4 :
|
|
case Hexagon::MemOPh_ADDr_V4 :
|
|
case Hexagon::MemOPh_SUBr_V4 :
|
|
case Hexagon::MemOPh_ANDr_V4 :
|
|
case Hexagon::MemOPh_ORr_V4 :
|
|
case Hexagon::MemOPb_ADDi_V4 :
|
|
case Hexagon::MemOPb_SUBi_V4 :
|
|
case Hexagon::MemOPb_ADDr_V4 :
|
|
case Hexagon::MemOPb_SUBr_V4 :
|
|
case Hexagon::MemOPb_ANDr_V4 :
|
|
case Hexagon::MemOPb_ORr_V4 :
|
|
case Hexagon::MemOPb_SETBITi_V4:
|
|
case Hexagon::MemOPh_SETBITi_V4:
|
|
case Hexagon::MemOPw_SETBITi_V4:
|
|
case Hexagon::MemOPb_CLRBITi_V4:
|
|
case Hexagon::MemOPh_CLRBITi_V4:
|
|
case Hexagon::MemOPw_CLRBITi_V4:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::
|
|
isSpillPredRegOp(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case Hexagon::STriw_pred :
|
|
case Hexagon::LDriw_pred :
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case Hexagon::CMPEQrr:
|
|
case Hexagon::CMPEQri:
|
|
case Hexagon::CMPGTrr:
|
|
case Hexagon::CMPGTri:
|
|
case Hexagon::CMPGTUrr:
|
|
case Hexagon::CMPGTUri:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool HexagonInstrInfo::
|
|
isConditionalTransfer (const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case Hexagon::TFR_cPt:
|
|
case Hexagon::TFR_cNotPt:
|
|
case Hexagon::TFRI_cPt:
|
|
case Hexagon::TFRI_cNotPt:
|
|
case Hexagon::TFR_cdnPt:
|
|
case Hexagon::TFR_cdnNotPt:
|
|
case Hexagon::TFRI_cdnPt:
|
|
case Hexagon::TFRI_cdnNotPt:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
|
|
const HexagonRegisterInfo& QRI = getRegisterInfo();
|
|
switch (MI->getOpcode())
|
|
{
|
|
default: return false;
|
|
case Hexagon::ADD_ri_cPt:
|
|
case Hexagon::ADD_ri_cNotPt:
|
|
case Hexagon::ADD_rr_cPt:
|
|
case Hexagon::ADD_rr_cNotPt:
|
|
case Hexagon::XOR_rr_cPt:
|
|
case Hexagon::XOR_rr_cNotPt:
|
|
case Hexagon::AND_rr_cPt:
|
|
case Hexagon::AND_rr_cNotPt:
|
|
case Hexagon::OR_rr_cPt:
|
|
case Hexagon::OR_rr_cNotPt:
|
|
case Hexagon::SUB_rr_cPt:
|
|
case Hexagon::SUB_rr_cNotPt:
|
|
case Hexagon::COMBINE_rr_cPt:
|
|
case Hexagon::COMBINE_rr_cNotPt:
|
|
return true;
|
|
case Hexagon::ASLH_cPt_V4:
|
|
case Hexagon::ASLH_cNotPt_V4:
|
|
case Hexagon::ASRH_cPt_V4:
|
|
case Hexagon::ASRH_cNotPt_V4:
|
|
case Hexagon::SXTB_cPt_V4:
|
|
case Hexagon::SXTB_cNotPt_V4:
|
|
case Hexagon::SXTH_cPt_V4:
|
|
case Hexagon::SXTH_cNotPt_V4:
|
|
case Hexagon::ZXTB_cPt_V4:
|
|
case Hexagon::ZXTB_cNotPt_V4:
|
|
case Hexagon::ZXTH_cPt_V4:
|
|
case Hexagon::ZXTH_cNotPt_V4:
|
|
return QRI.Subtarget.hasV4TOps();
|
|
}
|
|
}
|
|
|
|
bool HexagonInstrInfo::
|
|
isConditionalLoad (const MachineInstr* MI) const {
|
|
const HexagonRegisterInfo& QRI = getRegisterInfo();
|
|
switch (MI->getOpcode())
|
|
{
|
|
default: return false;
|
|
case Hexagon::LDrid_cPt :
|
|
case Hexagon::LDrid_cNotPt :
|
|
case Hexagon::LDrid_indexed_cPt :
|
|
case Hexagon::LDrid_indexed_cNotPt :
|
|
case Hexagon::LDriw_cPt :
|
|
case Hexagon::LDriw_cNotPt :
|
|
case Hexagon::LDriw_indexed_cPt :
|
|
case Hexagon::LDriw_indexed_cNotPt :
|
|
case Hexagon::LDrih_cPt :
|
|
case Hexagon::LDrih_cNotPt :
|
|
case Hexagon::LDrih_indexed_cPt :
|
|
case Hexagon::LDrih_indexed_cNotPt :
|
|
case Hexagon::LDrib_cPt :
|
|
case Hexagon::LDrib_cNotPt :
|
|
case Hexagon::LDrib_indexed_cPt :
|
|
case Hexagon::LDrib_indexed_cNotPt :
|
|
case Hexagon::LDriuh_cPt :
|
|
case Hexagon::LDriuh_cNotPt :
|
|
case Hexagon::LDriuh_indexed_cPt :
|
|
case Hexagon::LDriuh_indexed_cNotPt :
|
|
case Hexagon::LDriub_cPt :
|
|
case Hexagon::LDriub_cNotPt :
|
|
case Hexagon::LDriub_indexed_cPt :
|
|
case Hexagon::LDriub_indexed_cNotPt :
|
|
return true;
|
|
case Hexagon::POST_LDrid_cPt :
|
|
case Hexagon::POST_LDrid_cNotPt :
|
|
case Hexagon::POST_LDriw_cPt :
|
|
case Hexagon::POST_LDriw_cNotPt :
|
|
case Hexagon::POST_LDrih_cPt :
|
|
case Hexagon::POST_LDrih_cNotPt :
|
|
case Hexagon::POST_LDrib_cPt :
|
|
case Hexagon::POST_LDrib_cNotPt :
|
|
case Hexagon::POST_LDriuh_cPt :
|
|
case Hexagon::POST_LDriuh_cNotPt :
|
|
case Hexagon::POST_LDriub_cPt :
|
|
case Hexagon::POST_LDriub_cNotPt :
|
|
return QRI.Subtarget.hasV4TOps();
|
|
case Hexagon::LDrid_indexed_shl_cPt_V4 :
|
|
case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::LDrib_indexed_shl_cPt_V4 :
|
|
case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::LDriub_indexed_shl_cPt_V4 :
|
|
case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::LDrih_indexed_shl_cPt_V4 :
|
|
case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::LDriuh_indexed_shl_cPt_V4 :
|
|
case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::LDriw_indexed_shl_cPt_V4 :
|
|
case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
|
|
return QRI.Subtarget.hasV4TOps();
|
|
}
|
|
}
|
|
|
|
// Returns true if an instruction is a conditional store.
|
|
//
|
|
// Note: It doesn't include conditional new-value stores as they can't be
|
|
// converted to .new predicate.
|
|
//
|
|
// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
|
|
// ^ ^
|
|
// / \ (not OK. it will cause new-value store to be
|
|
// / X conditional on p0.new while R2 producer is
|
|
// / \ on p0)
|
|
// / \.
|
|
// p.new store p.old NV store
|
|
// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
|
|
// ^ ^
|
|
// \ /
|
|
// \ /
|
|
// \ /
|
|
// p.old store
|
|
// [if (p0)memw(R0+#0)=R2]
|
|
//
|
|
// The above diagram shows the steps involoved in the conversion of a predicated
|
|
// store instruction to its .new predicated new-value form.
|
|
//
|
|
// The following set of instructions further explains the scenario where
|
|
// conditional new-value store becomes invalid when promoted to .new predicate
|
|
// form.
|
|
//
|
|
// { 1) if (p0) r0 = add(r1, r2)
|
|
// 2) p0 = cmp.eq(r3, #0) }
|
|
//
|
|
// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
|
|
// the first two instructions because in instr 1, r0 is conditional on old value
|
|
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
|
|
// is not valid for new-value stores.
|
|
bool HexagonInstrInfo::
|
|
isConditionalStore (const MachineInstr* MI) const {
|
|
const HexagonRegisterInfo& QRI = getRegisterInfo();
|
|
switch (MI->getOpcode())
|
|
{
|
|
default: return false;
|
|
case Hexagon::STrib_imm_cPt_V4 :
|
|
case Hexagon::STrib_imm_cNotPt_V4 :
|
|
case Hexagon::STrib_indexed_shl_cPt_V4 :
|
|
case Hexagon::STrib_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::STrib_cPt :
|
|
case Hexagon::STrib_cNotPt :
|
|
case Hexagon::POST_STbri_cPt :
|
|
case Hexagon::POST_STbri_cNotPt :
|
|
case Hexagon::STrid_indexed_cPt :
|
|
case Hexagon::STrid_indexed_cNotPt :
|
|
case Hexagon::STrid_indexed_shl_cPt_V4 :
|
|
case Hexagon::POST_STdri_cPt :
|
|
case Hexagon::POST_STdri_cNotPt :
|
|
case Hexagon::STrih_cPt :
|
|
case Hexagon::STrih_cNotPt :
|
|
case Hexagon::STrih_indexed_cPt :
|
|
case Hexagon::STrih_indexed_cNotPt :
|
|
case Hexagon::STrih_imm_cPt_V4 :
|
|
case Hexagon::STrih_imm_cNotPt_V4 :
|
|
case Hexagon::STrih_indexed_shl_cPt_V4 :
|
|
case Hexagon::STrih_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::POST_SThri_cPt :
|
|
case Hexagon::POST_SThri_cNotPt :
|
|
case Hexagon::STriw_cPt :
|
|
case Hexagon::STriw_cNotPt :
|
|
case Hexagon::STriw_indexed_cPt :
|
|
case Hexagon::STriw_indexed_cNotPt :
|
|
case Hexagon::STriw_imm_cPt_V4 :
|
|
case Hexagon::STriw_imm_cNotPt_V4 :
|
|
case Hexagon::STriw_indexed_shl_cPt_V4 :
|
|
case Hexagon::STriw_indexed_shl_cNotPt_V4 :
|
|
case Hexagon::POST_STwri_cPt :
|
|
case Hexagon::POST_STwri_cNotPt :
|
|
return QRI.Subtarget.hasV4TOps();
|
|
|
|
// V4 global address store before promoting to dot new.
|
|
case Hexagon::STd_GP_cPt_V4 :
|
|
case Hexagon::STd_GP_cNotPt_V4 :
|
|
case Hexagon::STb_GP_cPt_V4 :
|
|
case Hexagon::STb_GP_cNotPt_V4 :
|
|
case Hexagon::STh_GP_cPt_V4 :
|
|
case Hexagon::STh_GP_cNotPt_V4 :
|
|
case Hexagon::STw_GP_cPt_V4 :
|
|
case Hexagon::STw_GP_cNotPt_V4 :
|
|
return QRI.Subtarget.hasV4TOps();
|
|
|
|
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
|
|
// from the "Conditional Store" list. Because a predicated new value store
|
|
// would NOT be promoted to a double dot new store. See diagram below:
|
|
// This function returns yes for those stores that are predicated but not
|
|
// yet promoted to predicate dot new instructions.
|
|
//
|
|
// +---------------------+
|
|
// /-----| if (p0) memw(..)=r0 |---------\~
|
|
// || +---------------------+ ||
|
|
// promote || /\ /\ || promote
|
|
// || /||\ /||\ ||
|
|
// \||/ demote || \||/
|
|
// \/ || || \/
|
|
// +-------------------------+ || +-------------------------+
|
|
// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
|
|
// +-------------------------+ || +-------------------------+
|
|
// || || ||
|
|
// || demote \||/
|
|
// promote || \/ NOT possible
|
|
// || || /\~
|
|
// \||/ || /||\~
|
|
// \/ || ||
|
|
// +-----------------------------+
|
|
// | if (p0.new) memw(..)=r0.new |
|
|
// +-----------------------------+
|
|
// Double Dot New Store
|
|
//
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
|
|
if (isNewValue(MI) && isBranch(MI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
|
|
return (getAddrMode(MI) == HexagonII::PostInc);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
|
|
}
|
|
|
|
// Returns true, if any one of the operands is a dot new
|
|
// insn, whether it is predicated dot new or register dot new.
|
|
bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
|
|
return (isNewValueInst(MI) ||
|
|
(isPredicated(MI) && isPredicatedNew(MI)));
|
|
}
|
|
|
|
// Returns the most basic instruction for the .new predicated instructions and
|
|
// new-value stores.
|
|
// For example, all of the following instructions will be converted back to the
|
|
// same instruction:
|
|
// 1) if (p0.new) memw(R0+#0) = R1.new --->
|
|
// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
|
|
// 3) if (p0.new) memw(R0+#0) = R1 --->
|
|
//
|
|
|
|
int HexagonInstrInfo::GetDotOldOp(const int opc) const {
|
|
int NewOp = opc;
|
|
if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
|
|
NewOp = Hexagon::getPredOldOpcode(NewOp);
|
|
if (NewOp < 0)
|
|
assert(0 && "Couldn't change predicate new instruction to its old form.");
|
|
}
|
|
|
|
if (isNewValueStore(NewOp)) { // Convert into non-new-value format
|
|
NewOp = Hexagon::getNonNVStore(NewOp);
|
|
if (NewOp < 0)
|
|
assert(0 && "Couldn't change new-value store to its old form.");
|
|
}
|
|
return NewOp;
|
|
}
|
|
|
|
// Return the new value instruction for a given store.
|
|
int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
|
|
int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
|
|
if (NVOpcode >= 0) // Valid new-value store instruction.
|
|
return NVOpcode;
|
|
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unknown .new type");
|
|
// store new value byte
|
|
case Hexagon::STrib_shl_V4:
|
|
return Hexagon::STrib_shl_nv_V4;
|
|
|
|
case Hexagon::STrih_shl_V4:
|
|
return Hexagon::STrih_shl_nv_V4;
|
|
|
|
case Hexagon::STriw_f:
|
|
return Hexagon::STriw_nv_V4;
|
|
|
|
case Hexagon::STriw_indexed_f:
|
|
return Hexagon::STriw_indexed_nv_V4;
|
|
|
|
case Hexagon::STriw_shl_V4:
|
|
return Hexagon::STriw_shl_nv_V4;
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return .new predicate version for an instruction.
|
|
int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
|
|
const MachineBranchProbabilityInfo
|
|
*MBPI) const {
|
|
|
|
int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
|
|
if (NewOpcode >= 0) // Valid predicate new instruction
|
|
return NewOpcode;
|
|
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unknown .new type");
|
|
// Condtional Jumps
|
|
case Hexagon::JMP_t:
|
|
case Hexagon::JMP_f:
|
|
return getDotNewPredJumpOp(MI, MBPI);
|
|
|
|
case Hexagon::JMPR_t:
|
|
return Hexagon::JMPR_tnew_tV3;
|
|
|
|
case Hexagon::JMPR_f:
|
|
return Hexagon::JMPR_fnew_tV3;
|
|
|
|
case Hexagon::JMPret_t:
|
|
return Hexagon::JMPret_tnew_tV3;
|
|
|
|
case Hexagon::JMPret_f:
|
|
return Hexagon::JMPret_fnew_tV3;
|
|
|
|
|
|
// Conditional combine
|
|
case Hexagon::COMBINE_rr_cPt :
|
|
return Hexagon::COMBINE_rr_cdnPt;
|
|
case Hexagon::COMBINE_rr_cNotPt :
|
|
return Hexagon::COMBINE_rr_cdnNotPt;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
|
|
}
|
|
|
|
/// immediateExtend - Changes the instruction in place to one using an immediate
|
|
/// extender.
|
|
void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
|
|
assert((isExtendable(MI)||isConstExtended(MI)) &&
|
|
"Instruction must be extendable");
|
|
// Find which operand is extendable.
|
|
short ExtOpNum = getCExtOpNum(MI);
|
|
MachineOperand &MO = MI->getOperand(ExtOpNum);
|
|
// This needs to be something we understand.
|
|
assert((MO.isMBB() || MO.isImm()) &&
|
|
"Branch with unknown extendable field type");
|
|
// Mark given operand as extended.
|
|
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
|
|
}
|
|
|
|
DFAPacketizer *HexagonInstrInfo::
|
|
CreateTargetScheduleState(const TargetMachine *TM,
|
|
const ScheduleDAG *DAG) const {
|
|
const InstrItineraryData *II = TM->getInstrItineraryData();
|
|
return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
|
|
}
|
|
|
|
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
// Debug info is never a scheduling boundary. It's necessary to be explicit
|
|
// due to the special treatment of IT instructions below, otherwise a
|
|
// dbg_value followed by an IT will result in the IT instruction being
|
|
// considered a scheduling hazard, which is wrong. It should be the actual
|
|
// instruction preceding the dbg_value instruction(s), just like it is
|
|
// when debug info is not present.
|
|
if (MI->isDebugValue())
|
|
return false;
|
|
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
|
|
|
|
// Constant extenders are allowed only for V4 and above.
|
|
if (!Subtarget.hasV4TOps())
|
|
return false;
|
|
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
|
|
if (isExtended) // Instruction must be extended.
|
|
return true;
|
|
|
|
unsigned isExtendable = (F >> HexagonII::ExtendablePos)
|
|
& HexagonII::ExtendableMask;
|
|
if (!isExtendable)
|
|
return false;
|
|
|
|
short ExtOpNum = getCExtOpNum(MI);
|
|
const MachineOperand &MO = MI->getOperand(ExtOpNum);
|
|
// Use MO operand flags to determine if MO
|
|
// has the HMOTF_ConstExtended flag set.
|
|
if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
|
|
return true;
|
|
// If this is a Machine BB address we are talking about, and it is
|
|
// not marked as extended, say so.
|
|
if (MO.isMBB())
|
|
return false;
|
|
|
|
// We could be using an instruction with an extendable immediate and shoehorn
|
|
// a global address into it. If it is a global address it will be constant
|
|
// extended. We do this for COMBINE.
|
|
// We currently only handle isGlobal() because it is the only kind of
|
|
// object we are going to end up with here for now.
|
|
// In the future we probably should add isSymbol(), etc.
|
|
if (MO.isGlobal() || MO.isSymbol())
|
|
return true;
|
|
|
|
// If the extendable operand is not 'Immediate' type, the instruction should
|
|
// have 'isExtended' flag set.
|
|
assert(MO.isImm() && "Extendable operand must be Immediate type");
|
|
|
|
int MinValue = getMinValue(MI);
|
|
int MaxValue = getMaxValue(MI);
|
|
int ImmValue = MO.getImm();
|
|
|
|
return (ImmValue < MinValue || ImmValue > MaxValue);
|
|
}
|
|
|
|
// Returns the opcode to use when converting MI, which is a conditional jump,
|
|
// into a conditional instruction which uses the .new value of the predicate.
|
|
// We also use branch probabilities to add a hint to the jump.
|
|
int
|
|
HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
|
|
const
|
|
MachineBranchProbabilityInfo *MBPI) const {
|
|
|
|
// We assume that block can have at most two successors.
|
|
bool taken = false;
|
|
MachineBasicBlock *Src = MI->getParent();
|
|
MachineOperand *BrTarget = &MI->getOperand(1);
|
|
MachineBasicBlock *Dst = BrTarget->getMBB();
|
|
|
|
const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
|
|
if (Prediction >= BranchProbability(1,2))
|
|
taken = true;
|
|
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::JMP_t:
|
|
return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
|
|
case Hexagon::JMP_f:
|
|
return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
|
|
|
|
default:
|
|
llvm_unreachable("Unexpected jump instruction.");
|
|
}
|
|
}
|
|
// Returns true if a particular operand is extendable for an instruction.
|
|
bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
|
|
unsigned short OperandNum) const {
|
|
// Constant extenders are allowed only for V4 and above.
|
|
if (!Subtarget.hasV4TOps())
|
|
return false;
|
|
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
|
|
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
|
|
== OperandNum;
|
|
}
|
|
|
|
// Returns Operand Index for the constant extended instruction.
|
|
unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
|
|
}
|
|
|
|
// Returns the min value that doesn't need to be extended.
|
|
int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
|
|
& HexagonII::ExtentSignedMask;
|
|
unsigned bits = (F >> HexagonII::ExtentBitsPos)
|
|
& HexagonII::ExtentBitsMask;
|
|
|
|
if (isSigned) // if value is signed
|
|
return -1 << (bits - 1);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// Returns the max value that doesn't need to be extended.
|
|
int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
|
|
& HexagonII::ExtentSignedMask;
|
|
unsigned bits = (F >> HexagonII::ExtentBitsPos)
|
|
& HexagonII::ExtentBitsMask;
|
|
|
|
if (isSigned) // if value is signed
|
|
return ~(-1 << (bits - 1));
|
|
else
|
|
return ~(-1 << bits);
|
|
}
|
|
|
|
// Returns true if an instruction can be converted into a non-extended
|
|
// equivalent instruction.
|
|
bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
|
|
|
|
short NonExtOpcode;
|
|
// Check if the instruction has a register form that uses register in place
|
|
// of the extended operand, if so return that as the non-extended form.
|
|
if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
|
|
return true;
|
|
|
|
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
|
|
// Check addressing mode and retrieve non-ext equivalent instruction.
|
|
|
|
switch (getAddrMode(MI)) {
|
|
case HexagonII::Absolute :
|
|
// Load/store with absolute addressing mode can be converted into
|
|
// base+offset mode.
|
|
NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
|
|
break;
|
|
case HexagonII::BaseImmOffset :
|
|
// Load/store with base+offset addressing mode can be converted into
|
|
// base+register offset addressing mode. However left shift operand should
|
|
// be set to 0.
|
|
NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
if (NonExtOpcode < 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns opcode of the non-extended equivalent instruction.
|
|
short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
|
|
|
|
// Check if the instruction has a register form that uses register in place
|
|
// of the extended operand, if so return that as the non-extended form.
|
|
short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
|
|
if (NonExtOpcode >= 0)
|
|
return NonExtOpcode;
|
|
|
|
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
|
|
// Check addressing mode and retrieve non-ext equivalent instruction.
|
|
switch (getAddrMode(MI)) {
|
|
case HexagonII::Absolute :
|
|
return Hexagon::getBasedWithImmOffset(MI->getOpcode());
|
|
case HexagonII::BaseImmOffset :
|
|
return Hexagon::getBaseWithRegOffset(MI->getOpcode());
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
|
|
return (Opcode == Hexagon::JMP_t) ||
|
|
(Opcode == Hexagon::JMP_f) ||
|
|
(Opcode == Hexagon::JMP_tnew_t) ||
|
|
(Opcode == Hexagon::JMP_fnew_t) ||
|
|
(Opcode == Hexagon::JMP_tnew_nt) ||
|
|
(Opcode == Hexagon::JMP_fnew_nt);
|
|
}
|
|
|
|
bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
|
|
return (Opcode == Hexagon::JMP_f) ||
|
|
(Opcode == Hexagon::JMP_fnew_t) ||
|
|
(Opcode == Hexagon::JMP_fnew_nt);
|
|
}
|