llvm-6502/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp
Venkatraman Govindaraju 75bff895e4 [Sparc] Add return/rett instruction to Sparc backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202666 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-02 22:55:53 +00:00

952 lines
27 KiB
C++

//===-- SparcAsmParser.cpp - Parse Sparc assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SparcMCTargetDesc.h"
#include "MCTargetDesc/SparcMCExpr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
// The generated AsmMatcher SparcGenAsmMatcher uses "Sparc" as the target
// namespace. But SPARC backend uses "SP" as its namespace.
namespace llvm {
namespace Sparc {
using namespace SP;
}
}
namespace {
class SparcOperand;
class SparcAsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
MCAsmParser &Parser;
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "SparcGenAsmMatcher.inc"
/// }
// public interface of the MCTargetAsmParser.
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirective(AsmToken DirectiveID);
virtual unsigned validateTargetOperandClass(MCParsedAsmOperand *Op,
unsigned Kind);
// Custom parse functions for Sparc specific operands.
OperandMatchResultTy
parseMEMOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Name);
OperandMatchResultTy
parseSparcAsmOperand(SparcOperand *&Operand, bool isCall = false);
OperandMatchResultTy
parseBranchModifiers(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
// returns true if Tok is matched to a register and returns register in RegNo.
bool matchRegisterName(const AsmToken &Tok, unsigned &RegNo,
unsigned &RegKind);
bool matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc);
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool is64Bit() const { return STI.getTargetTriple().startswith("sparcv9"); }
public:
SparcAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII)
: MCTargetAsmParser(), STI(sti), Parser(parser) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
};
static unsigned IntRegs[32] = {
Sparc::G0, Sparc::G1, Sparc::G2, Sparc::G3,
Sparc::G4, Sparc::G5, Sparc::G6, Sparc::G7,
Sparc::O0, Sparc::O1, Sparc::O2, Sparc::O3,
Sparc::O4, Sparc::O5, Sparc::O6, Sparc::O7,
Sparc::L0, Sparc::L1, Sparc::L2, Sparc::L3,
Sparc::L4, Sparc::L5, Sparc::L6, Sparc::L7,
Sparc::I0, Sparc::I1, Sparc::I2, Sparc::I3,
Sparc::I4, Sparc::I5, Sparc::I6, Sparc::I7 };
static unsigned FloatRegs[32] = {
Sparc::F0, Sparc::F1, Sparc::F2, Sparc::F3,
Sparc::F4, Sparc::F5, Sparc::F6, Sparc::F7,
Sparc::F8, Sparc::F9, Sparc::F10, Sparc::F11,
Sparc::F12, Sparc::F13, Sparc::F14, Sparc::F15,
Sparc::F16, Sparc::F17, Sparc::F18, Sparc::F19,
Sparc::F20, Sparc::F21, Sparc::F22, Sparc::F23,
Sparc::F24, Sparc::F25, Sparc::F26, Sparc::F27,
Sparc::F28, Sparc::F29, Sparc::F30, Sparc::F31 };
static unsigned DoubleRegs[32] = {
Sparc::D0, Sparc::D1, Sparc::D2, Sparc::D3,
Sparc::D4, Sparc::D5, Sparc::D6, Sparc::D7,
Sparc::D8, Sparc::D7, Sparc::D8, Sparc::D9,
Sparc::D12, Sparc::D13, Sparc::D14, Sparc::D15,
Sparc::D16, Sparc::D17, Sparc::D18, Sparc::D19,
Sparc::D20, Sparc::D21, Sparc::D22, Sparc::D23,
Sparc::D24, Sparc::D25, Sparc::D26, Sparc::D27,
Sparc::D28, Sparc::D29, Sparc::D30, Sparc::D31 };
static unsigned QuadFPRegs[32] = {
Sparc::Q0, Sparc::Q1, Sparc::Q2, Sparc::Q3,
Sparc::Q4, Sparc::Q5, Sparc::Q6, Sparc::Q7,
Sparc::Q8, Sparc::Q9, Sparc::Q10, Sparc::Q11,
Sparc::Q12, Sparc::Q13, Sparc::Q14, Sparc::Q15 };
/// SparcOperand - Instances of this class represent a parsed Sparc machine
/// instruction.
class SparcOperand : public MCParsedAsmOperand {
public:
enum RegisterKind {
rk_None,
rk_IntReg,
rk_FloatReg,
rk_DoubleReg,
rk_QuadReg,
rk_CCReg,
rk_Y
};
private:
enum KindTy {
k_Token,
k_Register,
k_Immediate,
k_MemoryReg,
k_MemoryImm
} Kind;
SMLoc StartLoc, EndLoc;
SparcOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
struct Token {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
RegisterKind Kind;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
unsigned Base;
unsigned OffsetReg;
const MCExpr *Off;
};
union {
struct Token Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
};
public:
bool isToken() const { return Kind == k_Token; }
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isMem() const { return isMEMrr() || isMEMri(); }
bool isMEMrr() const { return Kind == k_MemoryReg; }
bool isMEMri() const { return Kind == k_MemoryImm; }
bool isFloatReg() const {
return (Kind == k_Register && Reg.Kind == rk_FloatReg);
}
bool isFloatOrDoubleReg() const {
return (Kind == k_Register && (Reg.Kind == rk_FloatReg
|| Reg.Kind == rk_DoubleReg));
}
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate) && "Invalid access!");
return Imm.Val;
}
unsigned getMemBase() const {
assert((Kind == k_MemoryReg || Kind == k_MemoryImm) && "Invalid access!");
return Mem.Base;
}
unsigned getMemOffsetReg() const {
assert((Kind == k_MemoryReg) && "Invalid access!");
return Mem.OffsetReg;
}
const MCExpr *getMemOff() const {
assert((Kind == k_MemoryImm) && "Invalid access!");
return Mem.Off;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const {
return StartLoc;
}
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const {
return EndLoc;
}
virtual void print(raw_ostream &OS) const {
switch (Kind) {
case k_Token: OS << "Token: " << getToken() << "\n"; break;
case k_Register: OS << "Reg: #" << getReg() << "\n"; break;
case k_Immediate: OS << "Imm: " << getImm() << "\n"; break;
case k_MemoryReg: OS << "Mem: " << getMemBase() << "+"
<< getMemOffsetReg() << "\n"; break;
case k_MemoryImm: assert(getMemOff() != 0);
OS << "Mem: " << getMemBase()
<< "+" << *getMemOff()
<< "\n"; break;
}
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const{
// Add as immediate when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addMEMrrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBase()));
assert(getMemOffsetReg() != 0 && "Invalid offset");
Inst.addOperand(MCOperand::CreateReg(getMemOffsetReg()));
}
void addMEMriOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBase()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
static SparcOperand *CreateToken(StringRef Str, SMLoc S) {
SparcOperand *Op = new SparcOperand(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static SparcOperand *CreateReg(unsigned RegNum,
unsigned Kind,
SMLoc S, SMLoc E) {
SparcOperand *Op = new SparcOperand(k_Register);
Op->Reg.RegNum = RegNum;
Op->Reg.Kind = (SparcOperand::RegisterKind)Kind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static SparcOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
SparcOperand *Op = new SparcOperand(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static SparcOperand *MorphToDoubleReg(SparcOperand *Op) {
unsigned Reg = Op->getReg();
assert(Op->Reg.Kind == rk_FloatReg);
unsigned regIdx = Reg - Sparc::F0;
if (regIdx % 2 || regIdx > 31)
return 0;
Op->Reg.RegNum = DoubleRegs[regIdx / 2];
Op->Reg.Kind = rk_DoubleReg;
return Op;
}
static SparcOperand *MorphToQuadReg(SparcOperand *Op) {
unsigned Reg = Op->getReg();
unsigned regIdx = 0;
switch (Op->Reg.Kind) {
default: assert(0 && "Unexpected register kind!");
case rk_FloatReg:
regIdx = Reg - Sparc::F0;
if (regIdx % 4 || regIdx > 31)
return 0;
Reg = QuadFPRegs[regIdx / 4];
break;
case rk_DoubleReg:
regIdx = Reg - Sparc::D0;
if (regIdx % 2 || regIdx > 31)
return 0;
Reg = QuadFPRegs[regIdx / 2];
break;
}
Op->Reg.RegNum = Reg;
Op->Reg.Kind = rk_QuadReg;
return Op;
}
static SparcOperand *MorphToMEMrr(unsigned Base, SparcOperand *Op) {
unsigned offsetReg = Op->getReg();
Op->Kind = k_MemoryReg;
Op->Mem.Base = Base;
Op->Mem.OffsetReg = offsetReg;
Op->Mem.Off = 0;
return Op;
}
static SparcOperand *CreateMEMri(unsigned Base,
const MCExpr *Off,
SMLoc S, SMLoc E) {
SparcOperand *Op = new SparcOperand(k_MemoryImm);
Op->Mem.Base = Base;
Op->Mem.OffsetReg = 0;
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static SparcOperand *MorphToMEMri(unsigned Base, SparcOperand *Op) {
const MCExpr *Imm = Op->getImm();
Op->Kind = k_MemoryImm;
Op->Mem.Base = Base;
Op->Mem.OffsetReg = 0;
Op->Mem.Off = Imm;
return Op;
}
};
} // end namespace
bool SparcAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
default:
break;
case Match_Success: {
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, STI);
return false;
}
case Match_MissingFeature:
return Error(IDLoc,
"instruction requires a CPU feature not currently enabled");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SparcOperand*) Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction mnemonic");
}
return true;
}
bool SparcAsmParser::
ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc)
{
const AsmToken &Tok = Parser.getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
if (getLexer().getKind() != AsmToken::Percent)
return false;
Parser.Lex();
unsigned regKind = SparcOperand::rk_None;
if (matchRegisterName(Tok, RegNo, regKind)) {
Parser.Lex();
return false;
}
return Error(StartLoc, "invalid register name");
}
static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
unsigned VariantID);
bool SparcAsmParser::
ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands)
{
// First operand in MCInst is instruction mnemonic.
Operands.push_back(SparcOperand::CreateToken(Name, NameLoc));
// apply mnemonic aliases, if any, so that we can parse operands correctly.
applyMnemonicAliases(Name, getAvailableFeatures(), 0);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (getLexer().is(AsmToken::Comma)) {
if (parseBranchModifiers(Operands) != MatchOperand_Success) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
}
if (parseOperand(Operands, Name) != MatchOperand_Success) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, Name) != MatchOperand_Success) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool SparcAsmParser::
ParseDirective(AsmToken DirectiveID)
{
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".byte")
return parseDirectiveWord(1, DirectiveID.getLoc());
if (IDVal == ".half")
return parseDirectiveWord(2, DirectiveID.getLoc());
if (IDVal == ".word")
return parseDirectiveWord(4, DirectiveID.getLoc());
if (IDVal == ".nword")
return parseDirectiveWord(is64Bit() ? 8 : 4, DirectiveID.getLoc());
if (is64Bit() && IDVal == ".xword")
return parseDirectiveWord(8, DirectiveID.getLoc());
if (IDVal == ".register") {
// For now, ignore .register directive.
Parser.eatToEndOfStatement();
return false;
}
// Let the MC layer to handle other directives.
return true;
}
bool SparcAsmParser:: parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
SparcAsmParser::OperandMatchResultTy SparcAsmParser::
parseMEMOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands)
{
SMLoc S, E;
unsigned BaseReg = 0;
if (ParseRegister(BaseReg, S, E)) {
return MatchOperand_NoMatch;
}
switch (getLexer().getKind()) {
default: return MatchOperand_NoMatch;
case AsmToken::Comma:
case AsmToken::RBrac:
case AsmToken::EndOfStatement:
Operands.push_back(SparcOperand::CreateMEMri(BaseReg, 0, S, E));
return MatchOperand_Success;
case AsmToken:: Plus:
Parser.Lex(); // Eat the '+'
break;
case AsmToken::Minus:
break;
}
SparcOperand *Offset = 0;
OperandMatchResultTy ResTy = parseSparcAsmOperand(Offset);
if (ResTy != MatchOperand_Success || !Offset)
return MatchOperand_NoMatch;
Offset = (Offset->isImm()
? SparcOperand::MorphToMEMri(BaseReg, Offset)
: SparcOperand::MorphToMEMrr(BaseReg, Offset));
Operands.push_back(Offset);
return MatchOperand_Success;
}
SparcAsmParser::OperandMatchResultTy SparcAsmParser::
parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic)
{
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail)
return ResTy;
if (getLexer().is(AsmToken::LBrac)) {
// Memory operand
Operands.push_back(SparcOperand::CreateToken("[",
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the [
if (Mnemonic == "cas" || Mnemonic == "casx") {
SMLoc S = Parser.getTok().getLoc();
if (getLexer().getKind() != AsmToken::Percent)
return MatchOperand_NoMatch;
Parser.Lex(); // eat %
unsigned RegNo, RegKind;
if (!matchRegisterName(Parser.getTok(), RegNo, RegKind))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the identifier token.
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer()-1);
Operands.push_back(SparcOperand::CreateReg(RegNo, RegKind, S, E));
ResTy = MatchOperand_Success;
} else {
ResTy = parseMEMOperand(Operands);
}
if (ResTy != MatchOperand_Success)
return ResTy;
if (!getLexer().is(AsmToken::RBrac))
return MatchOperand_ParseFail;
Operands.push_back(SparcOperand::CreateToken("]",
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the ]
return MatchOperand_Success;
}
SparcOperand *Op = 0;
ResTy = parseSparcAsmOperand(Op, (Mnemonic == "call"));
if (ResTy != MatchOperand_Success || !Op)
return MatchOperand_ParseFail;
// Push the parsed operand into the list of operands
Operands.push_back(Op);
return MatchOperand_Success;
}
SparcAsmParser::OperandMatchResultTy
SparcAsmParser::parseSparcAsmOperand(SparcOperand *&Op, bool isCall)
{
SMLoc S = Parser.getTok().getLoc();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *EVal;
Op = 0;
switch (getLexer().getKind()) {
default: break;
case AsmToken::Percent:
Parser.Lex(); // Eat the '%'.
unsigned RegNo;
unsigned RegKind;
if (matchRegisterName(Parser.getTok(), RegNo, RegKind)) {
StringRef name = Parser.getTok().getString();
Parser.Lex(); // Eat the identifier token.
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
switch (RegNo) {
default:
Op = SparcOperand::CreateReg(RegNo, RegKind, S, E);
break;
case Sparc::Y:
Op = SparcOperand::CreateToken("%y", S);
break;
case Sparc::ICC:
if (name == "xcc")
Op = SparcOperand::CreateToken("%xcc", S);
else
Op = SparcOperand::CreateToken("%icc", S);
break;
}
break;
}
if (matchSparcAsmModifiers(EVal, E)) {
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Op = SparcOperand::CreateImm(EVal, S, E);
}
break;
case AsmToken::Minus:
case AsmToken::Integer:
if (!getParser().parseExpression(EVal, E))
Op = SparcOperand::CreateImm(EVal, S, E);
break;
case AsmToken::Identifier: {
StringRef Identifier;
if (!getParser().parseIdentifier(Identifier)) {
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
const MCExpr *Res = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
getContext());
if (isCall &&
getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_)
Res = SparcMCExpr::Create(SparcMCExpr::VK_Sparc_WPLT30, Res,
getContext());
Op = SparcOperand::CreateImm(Res, S, E);
}
break;
}
}
return (Op) ? MatchOperand_Success : MatchOperand_ParseFail;
}
SparcAsmParser::OperandMatchResultTy SparcAsmParser::
parseBranchModifiers(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// parse (,a|,pn|,pt)+
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma
if (!getLexer().is(AsmToken::Identifier))
return MatchOperand_ParseFail;
StringRef modName = Parser.getTok().getString();
if (modName == "a" || modName == "pn" || modName == "pt") {
Operands.push_back(SparcOperand::CreateToken(modName,
Parser.getTok().getLoc()));
Parser.Lex(); // eat the identifier.
}
}
return MatchOperand_Success;
}
bool SparcAsmParser::matchRegisterName(const AsmToken &Tok,
unsigned &RegNo,
unsigned &RegKind)
{
int64_t intVal = 0;
RegNo = 0;
RegKind = SparcOperand::rk_None;
if (Tok.is(AsmToken::Identifier)) {
StringRef name = Tok.getString();
// %fp
if (name.equals("fp")) {
RegNo = Sparc::I6;
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %sp
if (name.equals("sp")) {
RegNo = Sparc::O6;
RegKind = SparcOperand::rk_IntReg;
return true;
}
if (name.equals("y")) {
RegNo = Sparc::Y;
RegKind = SparcOperand::rk_Y;
return true;
}
if (name.equals("icc")) {
RegNo = Sparc::ICC;
RegKind = SparcOperand::rk_CCReg;
return true;
}
if (name.equals("xcc")) {
// FIXME:: check 64bit.
RegNo = Sparc::ICC;
RegKind = SparcOperand::rk_CCReg;
return true;
}
// %fcc0 - %fcc3
if (name.substr(0, 3).equals_lower("fcc")
&& !name.substr(3).getAsInteger(10, intVal)
&& intVal < 4) {
// FIXME: check 64bit and handle %fcc1 - %fcc3
RegNo = Sparc::FCC0 + intVal;
RegKind = SparcOperand::rk_CCReg;
return true;
}
// %g0 - %g7
if (name.substr(0, 1).equals_lower("g")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %o0 - %o7
if (name.substr(0, 1).equals_lower("o")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[8 + intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
if (name.substr(0, 1).equals_lower("l")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[16 + intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
if (name.substr(0, 1).equals_lower("i")
&& !name.substr(1).getAsInteger(10, intVal)
&& intVal < 8) {
RegNo = IntRegs[24 + intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
// %f0 - %f31
if (name.substr(0, 1).equals_lower("f")
&& !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 32) {
RegNo = FloatRegs[intVal];
RegKind = SparcOperand::rk_FloatReg;
return true;
}
// %f32 - %f62
if (name.substr(0, 1).equals_lower("f")
&& !name.substr(1, 2).getAsInteger(10, intVal)
&& intVal >= 32 && intVal <= 62 && (intVal % 2 == 0)) {
// FIXME: Check V9
RegNo = DoubleRegs[intVal/2];
RegKind = SparcOperand::rk_DoubleReg;
return true;
}
// %r0 - %r31
if (name.substr(0, 1).equals_lower("r")
&& !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 31) {
RegNo = IntRegs[intVal];
RegKind = SparcOperand::rk_IntReg;
return true;
}
}
return false;
}
static bool hasGOTReference(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Target:
if (const SparcMCExpr *SE = dyn_cast<SparcMCExpr>(Expr))
return hasGOTReference(SE->getSubExpr());
break;
case MCExpr::Constant:
break;
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
return hasGOTReference(BE->getLHS()) || hasGOTReference(BE->getRHS());
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SymRef = *cast<MCSymbolRefExpr>(Expr);
return (SymRef.getSymbol().getName() == "_GLOBAL_OFFSET_TABLE_");
}
case MCExpr::Unary:
return hasGOTReference(cast<MCUnaryExpr>(Expr)->getSubExpr());
}
return false;
}
bool SparcAsmParser::matchSparcAsmModifiers(const MCExpr *&EVal,
SMLoc &EndLoc)
{
AsmToken Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return false;
StringRef name = Tok.getString();
SparcMCExpr::VariantKind VK = SparcMCExpr::parseVariantKind(name);
if (VK == SparcMCExpr::VK_Sparc_None)
return false;
Parser.Lex(); // Eat the identifier.
if (Parser.getTok().getKind() != AsmToken::LParen)
return false;
Parser.Lex(); // Eat the LParen token.
const MCExpr *subExpr;
if (Parser.parseParenExpression(subExpr, EndLoc))
return false;
bool isPIC = getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_;
switch(VK) {
default: break;
case SparcMCExpr::VK_Sparc_LO:
VK = (hasGOTReference(subExpr)
? SparcMCExpr::VK_Sparc_PC10
: (isPIC ? SparcMCExpr::VK_Sparc_GOT10 : VK));
break;
case SparcMCExpr::VK_Sparc_HI:
VK = (hasGOTReference(subExpr)
? SparcMCExpr::VK_Sparc_PC22
: (isPIC ? SparcMCExpr::VK_Sparc_GOT22 : VK));
break;
}
EVal = SparcMCExpr::Create(VK, subExpr, getContext());
return true;
}
extern "C" void LLVMInitializeSparcAsmParser() {
RegisterMCAsmParser<SparcAsmParser> A(TheSparcTarget);
RegisterMCAsmParser<SparcAsmParser> B(TheSparcV9Target);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "SparcGenAsmMatcher.inc"
unsigned SparcAsmParser::
validateTargetOperandClass(MCParsedAsmOperand *GOp,
unsigned Kind)
{
SparcOperand *Op = (SparcOperand*)GOp;
if (Op->isFloatOrDoubleReg()) {
switch (Kind) {
default: break;
case MCK_DFPRegs:
if (!Op->isFloatReg() || SparcOperand::MorphToDoubleReg(Op))
return MCTargetAsmParser::Match_Success;
break;
case MCK_QFPRegs:
if (SparcOperand::MorphToQuadReg(Op))
return MCTargetAsmParser::Match_Success;
break;
}
}
return Match_InvalidOperand;
}