llvm-6502/lib/CodeGen
Manman Ren be87b69a5f Debug Info: code clean up.
Since we never insert DIE for DITemplateTypeParameter to a map, there is no need
to call getDIE in getOrCreateTemplateTypeParameterDIE. It is also renamed to
constructTemplateTypeParameterDIE to match with other construct functions
in CompileUnit.

Same applies to getOrCreateTemplateValueParameterDIE.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193287 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-23 23:05:28 +00:00
..
AsmPrinter Debug Info: code clean up. 2013-10-23 23:05:28 +00:00
SelectionDAG SelectionDAG: Pass along the original argument/element type in ISD::InputArg 2013-10-23 00:44:24 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
BasicTargetTransformInfo.cpp
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp
CMakeLists.txt Move LiveRegUnits implementation into .cpp. Comment and format. 2013-10-14 20:45:14 +00:00
CodeGen.cpp Remove the now unused strong phi elimination pass. 2013-10-14 16:39:04 +00:00
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp
DwarfEHPrepare.cpp
EarlyIfConversion.cpp
EdgeBundles.cpp
ErlangGC.cpp
ExecutionDepsFix.cpp Improve on r192635, ExeDepsFix for avx, and add a test case. 2013-10-15 03:39:43 +00:00
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp fix typo in comment 2013-10-11 15:40:14 +00:00
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp LiveRegUnits: Use *MBB for consistency and convenience. 2013-10-14 22:18:59 +00:00
InlineSpiller.cpp Print register in LiveInterval::print() 2013-10-10 21:29:05 +00:00
InterferenceCache.cpp Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
InterferenceCache.h Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
IntrinsicLowering.cpp
JITCodeEmitter.cpp
LatencyPriorityQueue.cpp
LexicalScopes.cpp
LiveDebugVariables.cpp Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
LiveDebugVariables.h
LiveInterval.cpp Print register in LiveInterval::print() 2013-10-10 21:29:05 +00:00
LiveIntervalAnalysis.cpp Print register in LiveInterval::print() 2013-10-10 21:29:05 +00:00
LiveIntervalUnion.cpp
LiveRangeCalc.cpp Work on LiveRange instead of LiveInterval where possible 2013-10-10 21:28:57 +00:00
LiveRangeCalc.h LiveRangeCalc.h: Update a description corresponding to r192396. [-Wdocumentation] 2013-10-11 04:52:03 +00:00
LiveRangeEdit.cpp Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
LiveRegMatrix.cpp Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
LiveRegUnits.cpp LiveRegUnits: Use *MBB for consistency and convenience. 2013-10-14 22:18:59 +00:00
LiveStackAnalysis.cpp
LiveVariables.cpp
LLVMBuild.txt
LLVMTargetMachine.cpp Grammar. 2013-10-08 16:47:11 +00:00
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp Rename LiveRange to LiveInterval::Segment 2013-10-10 21:28:43 +00:00
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp
MachineBranchProbabilityInfo.cpp
MachineCodeEmitter.cpp
MachineCopyPropagation.cpp
MachineCSE.cpp
MachineDominators.cpp
MachineFunction.cpp
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Guard the debug temp variable with NDEBUG to avoid warning/error with NDEBUG defined. 2013-10-15 14:40:46 +00:00
MachineInstrBundle.cpp
MachineLICM.cpp
MachineLoopInfo.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachinePostDominators.cpp
MachineRegisterInfo.cpp
MachineScheduler.cpp Pass LiveQueryResult by value 2013-10-10 21:28:52 +00:00
MachineSink.cpp MachineSink: Fix and tweak critical-edge breaking heuristic. 2013-10-14 16:57:17 +00:00
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp
MachineVerifier.cpp Print register in LiveInterval::print() 2013-10-10 21:29:05 +00:00
Makefile
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Remove the now unused strong phi elimination pass. 2013-10-14 16:39:04 +00:00
PeepholeOptimizer.cpp
PHIElimination.cpp Rename LiveRange to LiveInterval::Segment 2013-10-10 21:28:43 +00:00
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp After PostRA scheduling, don't set kill flags on undef operands. 2013-10-16 18:30:23 +00:00
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp Print register in LiveInterval::print() 2013-10-10 21:29:05 +00:00
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp Explicitly request unsigned enum types when desired 2013-10-08 20:15:11 +00:00
RegAllocGreedy.cpp Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
RegAllocPBQP.cpp
RegisterClassInfo.cpp
RegisterCoalescer.cpp Print register in LiveInterval::print() 2013-10-10 21:29:05 +00:00
RegisterCoalescer.h
RegisterPressure.cpp Represent RegUnit liveness with LiveRange instance 2013-10-10 21:29:02 +00:00
RegisterScavenging.cpp
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp Pass LiveQueryResult by value 2013-10-10 21:28:52 +00:00
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.cpp
Spiller.h
SpillPlacement.cpp
SpillPlacement.h
SplitKit.cpp Work on LiveRange instead of LiveInterval where possible 2013-10-10 21:28:57 +00:00
SplitKit.h
StackColoring.cpp Rename LiveRange to LiveInterval::Segment 2013-10-10 21:28:43 +00:00
StackProtector.cpp
StackSlotColoring.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
TargetLoweringBase.cpp SelectionDAG: Pass along the original argument/element type in ISD::InputArg 2013-10-23 00:44:24 +00:00
TargetLoweringObjectFileImpl.cpp
TargetOptionsImpl.cpp
TargetRegisterInfo.cpp
TargetSchedule.cpp
TwoAddressInstructionPass.cpp Rename LiveRange to LiveInterval::Segment 2013-10-10 21:28:43 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str r4, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.