ii-pix/dither.py

513 lines
19 KiB
Python
Raw Normal View History

import argparse
import functools
2021-01-08 22:44:28 +00:00
import os.path
from typing import Tuple
from PIL import Image
2021-01-08 22:44:28 +00:00
import colour.difference
import numpy as np
# TODO:
2021-01-08 22:44:28 +00:00
# - precompute lab differences
# - only lookahead for 560px
# - palette class
# - compare to bmp2dhr and a2bestpix
def srgb_to_linear_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
return np.where(a <= 0.04045, a / 12.92, ((a + 0.055) / 1.055) ** gamma)
def linear_to_srgb_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
return np.where(a <= 0.0031308, a * 12.92, 1.055 * a ** (1.0 / gamma) -
0.055)
# XXX work uniformly with 255 or 1.0 range
def srgb_to_linear(im: np.ndarray) -> np.ndarray:
rgb_linear = srgb_to_linear_array(im / 255.0, gamma=2.4)
return (np.clip(rgb_linear, 0.0, 1.0) * 255).astype(np.float32)
def linear_to_srgb(im: np.ndarray) -> np.ndarray:
srgb = linear_to_srgb_array(im / 255.0, gamma=2.4)
return (np.clip(srgb, 0.0, 1.0) * 255).astype(np.float32)
# Default bmp2dhr palette
RGB = {
(False, False, False, False): np.array((0, 0, 0)), # Black
(False, False, False, True): np.array((148, 12, 125)), # Magenta
(False, False, True, False): np.array((99, 77, 0)), # Brown
(False, False, True, True): np.array((249, 86, 29)), # Orange
(False, True, False, False): np.array((51, 111, 0)), # Dark green
# XXX RGB values are used as keys in DOTS dict, need to be unique
(False, True, False, True): np.array((126, 126, 125)), # Grey1
(False, True, True, False): np.array((67, 200, 0)), # Green
(False, True, True, True): np.array((221, 206, 23)), # Yellow
(True, False, False, False): np.array((32, 54, 212)), # Dark blue
(True, False, False, True): np.array((188, 55, 255)), # Violet
(True, False, True, False): np.array((126, 126, 126)), # Grey2
(True, False, True, True): np.array((255, 129, 236)), # Pink
(True, True, False, False): np.array((7, 168, 225)), # Med blue
(True, True, False, True): np.array((158, 172, 255)), # Light blue
(True, True, True, False): np.array((93, 248, 133)), # Aqua
(True, True, True, True): np.array((255, 255, 255)), # White
}
# OpenEmulator
sRGB = {
(False, False, False, False): np.array((0, 0, 0)), # Black
(False, False, False, True): np.array((206, 0, 123)), # Magenta
(False, False, True, False): np.array((100, 105, 0)), # Brown
(False, False, True, True): np.array((247, 79, 0)), # Orange
(False, True, False, False): np.array((0, 153, 0)), # Dark green
# XXX RGB values are used as keys in DOTS dict, need to be unique
(False, True, False, True): np.array((131, 132, 132)), # Grey1
(False, True, True, False): np.array((0, 242, 0)), # Green
(False, True, True, True): np.array((216, 220, 0)), # Yellow
(True, False, False, False): np.array((21, 0, 248)), # Dark blue
(True, False, False, True): np.array((235, 0, 242)), # Violet
(True, False, True, False): np.array((140, 140, 140)), # Grey2 # XXX
(True, False, True, True): np.array((244, 104, 240)), # Pink
(True, True, False, False): np.array((0, 181, 248)), # Med blue
(True, True, False, True): np.array((160, 156, 249)), # Light blue
(True, True, True, False): np.array((21, 241, 132)), # Aqua
(True, True, True, True): np.array((244, 247, 244)), # White
}
# # Virtual II (sRGB)
# sRGB = {
# (False, False, False, False): np.array((0, 0, 0)), # Black
# (False, False, False, True): np.array((231,36,66)), # Magenta
# (False, False, True, False): np.array((154,104,0)), # Brown
# (False, False, True, True): np.array((255,124,0)), # Orange
# (False, True, False, False): np.array((0,135,45)), # Dark green
# (False, True, False, True): np.array((104,104,104)), # Grey2 XXX
# (False, True, True, False): np.array((0,222,0)), # Green
# (False, True, True, True): np.array((255,252,0)), # Yellow
# (True, False, False, False): np.array((1,30,169)), # Dark blue
# (True, False, False, True): np.array((230,73,228)), # Violet
# (True, False, True, False): np.array((185,185,185)), # Grey1 XXX
# (True, False, True, True): np.array((255,171,153)), # Pink
# (True, True, False, False): np.array((47,69,255)), # Med blue
# (True, True, False, True): np.array((120,187,255)), # Light blue
# (True, True, True, False): np.array((83,250,208)), # Aqua
# (True, True, True, True): np.array((255, 255, 255)), # White
# }
RGB = {}
for k, v in sRGB.items():
RGB[k] = (np.clip(srgb_to_linear_array(v / 255), 0.0, 1.0) * 255).astype(
np.uint8)
class ColourDistance:
@staticmethod
2021-01-08 22:44:28 +00:00
def distance(rgb1: np.ndarray, rgb2: np.ndarray) -> float:
raise NotImplementedError
class RGBDistance(ColourDistance):
"""Euclidean squared distance in RGB colour space."""
@staticmethod
2021-01-08 22:44:28 +00:00
def distance(rgb1: np.ndarray, rgb2: np.ndarray) -> float:
return float(np.asscalar(np.sum(np.power(np.array(rgb1) -
np.array(rgb2), 2))))
class CIE2000Distance(ColourDistance):
"""CIE2000 delta-E distance."""
@staticmethod
2021-01-08 22:44:28 +00:00
# XXX
def _nearest_colours():
all_rgb = np.array(tuple(np.ndindex(256, 256, 256)),
dtype=np.uint8)
all_srgb = linear_to_srgb(all_rgb / 255) * 255
xyz = colour.sRGB_to_XYZ(all_srgb)
lab = colour.XYZ_to_Lab(xyz)
print(all_rgb.shape)
best_diff = np.full(all_rgb.shape[0], 1e9, dtype=np.float32)
best_match = np.empty(all_rgb.shape[0], dtype=np.uint8)
for i, p in enumerate(RGB.values()):
p_srgb = linear_to_srgb_array(p / 255) * 255
diff = colour.delta_E(all_rgb, p_srgb)
print(diff < best_diff)
print(best_diff.shape)
better = diff < best_diff
best_match[better] = i
best_diff[better] = diff[better]
return best_match.reshape((256, 256, 256))
@staticmethod
2021-01-08 22:44:28 +00:00
def distance(lab1: np.ndarray, lab2: np.ndarray) -> float:
return colour.difference.delta_E_CIE2000(lab1, lab2)
2021-01-08 22:44:28 +00:00
def rgb_to_lab(rgb: np.ndarray):
srgb = np.clip(
linear_to_srgb_array(np.array(rgb, dtype=np.float32) / 255), 0.0,
1.0)
xyz = colour.sRGB_to_XYZ(srgb)
return colour.XYZ_to_Lab(xyz)
LAB = {}
for k, v in RGB.items():
LAB[k] = rgb_to_lab(v)
DOTS = {}
for k, v in LAB.items():
DOTS[tuple(v)] = k
# class CCIR601Distance(ColourDistance):
# @staticmethod
# def _to_luma(rgb: np.ndarray):
# return rgb[0] * 0.299 + rgb[1] * 0.587 + rgb[2] * 0.114
#
# def distance(self, rgb1: np.ndarray, rgb2: np.ndarray) -> float:
# delta_rgb = ((rgb1[0] - rgb2[0]) / 255, (rgb1[1] - rgb2[1]) / 255,
# (rgb1[2] - rgb2[2]) / 255)
# luma_diff = (self._to_luma(rgb1) - self._to_luma(rgb2)) / 255
#
# # TODO: this is the formula bmp2dhr uses but what motivates it?
# return (
# delta_rgb[0] * delta_rgb[0] * 0.299 +
# delta_rgb[1] * delta_rgb[1] * 0.587 +
# delta_rgb[2] * delta_rgb[2] * 0.114) * 0.75 + (
# luma_diff * luma_diff)
class Screen:
X_RES = None
Y_RES = None
X_PIXEL_WIDTH = None
def __init__(self):
self.main = np.zeros(8192, dtype=np.uint8)
self.aux = np.zeros(8192, dtype=np.uint8)
@staticmethod
def y_to_base_addr(y: int) -> int:
"""Maps y coordinate to screen memory base address."""
a = y // 64
d = y - 64 * a
b = d // 8
c = d - 8 * b
return 1024 * c + 128 * b + 40 * a
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
raise NotImplementedError
def pack(self, image: np.ndarray):
bitmap = self._image_to_bitmap(image)
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
# of AUX and MAIN memory, as follows:
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
# Aux N Main N Aux N+1 Main N+1 (N even)
main_col = np.zeros(
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
aux_col = np.zeros(
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
for byte_offset in range(80):
column = np.zeros(self.Y_RES, dtype=np.uint8)
for bit in range(7):
column |= (bitmap[:, 7 * byte_offset + bit].astype(
np.uint8) << bit)
if byte_offset % 2 == 0:
aux_col[:, byte_offset // 2] = column
else:
main_col[:, (byte_offset - 1) // 2] = column
for y in range(self.Y_RES):
addr = self.y_to_base_addr(y)
self.aux[addr:addr + 40] = aux_col[y, :]
self.main[addr:addr + 40] = main_col[y, :]
@staticmethod
def pixel_palette_options(last_pixel, x: int):
raise NotImplementedError
@staticmethod
2021-01-08 22:44:28 +00:00
def find_closest_color(
pixel, palette_options, palette_options_lab, differ:
ColourDistance):
best = np.argmin(differ.distance(pixel, palette_options_lab))
return palette_options[best]
class DHGR140Screen(Screen):
"""DHGR screen ignoring colour fringing, i.e. treating as 140x192x16."""
X_RES = 140
Y_RES = 192
X_PIXEL_WIDTH = 4
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
bitmap = np.zeros(
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH), dtype=np.bool)
for y in range(self.Y_RES):
for x in range(self.X_RES):
pixel = image[y, x]
dots = DOTS[pixel]
bitmap[y, x * self.X_PIXEL_WIDTH:(
(x + 1) * self.X_PIXEL_WIDTH)] = dots
return bitmap
@staticmethod
def pixel_palette_options(last_pixel, x: int):
2021-01-08 22:44:28 +00:00
return np.array(list(RGB.values())), np.array(list(LAB.values()))
class DHGR560Screen(Screen):
"""DHGR screen including colour fringing."""
X_RES = 560
Y_RES = 192
X_PIXEL_WIDTH = 1
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
bitmap = np.zeros((self.Y_RES, self.X_RES), dtype=np.bool)
for y in range(self.Y_RES):
for x in range(self.X_RES):
pixel = image[y, x]
dots = DOTS[tuple(pixel)]
phase = x % 4
bitmap[y, x] = dots[phase]
return bitmap
2021-01-08 22:44:28 +00:00
@staticmethod
def pixel_palette_options(last_pixel, x: int):
last_dots = DOTS[tuple(last_pixel)]
other_dots = list(last_dots)
other_dots[x % 4] = not other_dots[x % 4]
other_dots = tuple(other_dots)
2021-01-08 22:44:28 +00:00
return (
np.array([RGB[last_dots], RGB[other_dots]]),
np.array([LAB[last_dots], LAB[other_dots]]))
class Dither:
PATTERN = None
ORIGIN = None
2021-01-08 22:44:28 +00:00
def dither_bounds(self, screen: Screen, x: int, y: int):
pshape = self.PATTERN.shape
et = max(self.ORIGIN[0] - y, 0)
eb = min(pshape[0], screen.Y_RES - 1 - y)
el = max(self.ORIGIN[1] - x, 0)
er = min(pshape[1], screen.X_RES - 1 - x)
yt = y - self.ORIGIN[0] + et
yb = y - self.ORIGIN[0] + eb
xl = x - self.ORIGIN[1] + el
xr = x - self.ORIGIN[1] + er
2021-01-08 22:44:28 +00:00
return et, eb, el, er, yt, yb, xl, xr
def apply(self, screen: Screen, image: np.ndarray, x: int, y: int,
quant_error: np.ndarray):
pshape = self.PATTERN.shape
error = self.PATTERN.reshape(
(pshape[0], pshape[1], 1)) * quant_error.reshape((1, 1,
3))
et, eb, el, er, yt, yb, xl, xr = self.dither_bounds(screen, x, y)
image[yt:yb, xl:xr, :] = np.clip(
image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
class FloydSteinbergDither(Dither):
# 0 * 7
# 3 5 1
PATTERN = np.array(((0, 0, 7), (3, 5, 1))) / 16
ORIGIN = (0, 1)
class BuckelsDither(Dither):
# 0 * 2 1
# 1 2 1 0
# 0 1 0 0
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0))) / 8
ORIGIN = (0, 1)
class JarvisDither(Dither):
# 0 0 X 7 5
# 3 5 7 5 3
# 1 3 5 3 1
PATTERN = np.array(((0, 0, 0, 7, 5), (3, 5, 7, 5, 3), (1, 3, 5, 3, 1))) / 48
ORIGIN = (0, 2)
# XXX needed?
def SRGBResize(im, size, filter) -> np.ndarray:
# Convert to numpy array of float
arr = np.array(im, dtype=np.float32) / 255.0
# Convert sRGB -> linear
arr = np.where(arr <= 0.04045, arr / 12.92, ((arr + 0.055) / 1.055) ** 2.4)
# Resize using PIL
arrOut = np.zeros((size[1], size[0], arr.shape[2]))
for i in range(arr.shape[2]):
chan = Image.fromarray(arr[:, :, i])
chan = chan.resize(size, filter)
arrOut[:, :, i] = np.array(chan).clip(0.0, 1.0)
# Convert linear -> sRGB
arrOut = np.where(arrOut <= 0.0031308, 12.92 * arrOut,
1.055 * arrOut ** (1.0 / 2.4) - 0.055)
arrOut = np.rint(np.clip(arrOut, 0.0, 1.0) * 255.0)
return arrOut
def open_image(screen: Screen, filename: str) -> np.ndarray:
im = Image.open(filename)
# TODO: convert to sRGB colour profile explicitly, in case it has some other
# profile already.
if im.mode != "RGB":
im = im.convert("RGB")
return srgb_to_linear(
SRGBResize(im, (screen.X_RES, screen.Y_RES),
Image.LANCZOS))
2021-01-08 22:44:28 +00:00
@functools.lru_cache(None)
def lookahead_options(screen, lookahead, last_pixel_lab, x):
options_rgb = np.empty((lookahead, 2 ** lookahead, 3), dtype=np.float32)
options_lab = np.empty((lookahead, 2 ** lookahead, 3), dtype=np.float32)
for i in range(lookahead):
output_pixel_lab = np.array(last_pixel_lab)
for j in range(2 ** lookahead):
xx = x + j
palette_choices, palette_choices_lab = screen.pixel_palette_options(
output_pixel_lab, xx)
output_pixel_lab = np.array(
palette_choices_lab[(i & (1 << j)) >> j])
output_pixel_rgb = np.array(
palette_choices[(i & (1 << j)) >> j])
options_lab[i, j, :] = np.copy(output_pixel_lab)
options_rgb[i, j, :] = np.copy(output_pixel_rgb)
return options_rgb, options_lab
def ideal_dither(screen: Screen, image: np.ndarray, image_lab: np.ndarray,
dither: Dither, differ: ColourDistance, x, y,
lookahead) -> np.ndarray:
et, eb, el, er, yt, yb, xl, xr = dither.dither_bounds(screen, x, y)
# XXX tighten bounding box
ideal_dither = np.empty_like(image)
ideal_dither[yt:yb, :, :] = np.copy(image[yt:yb, :, :])
ideal_dither_lab = np.empty_like(image_lab)
ideal_dither_lab[yt:yb, :, :] = np.copy(image_lab[yt:yb, :, :])
palette_choices = np.array(list(RGB.values()))
palette_choices_lab = np.array(list(LAB.values()))
for xx in range(x, min(max(x + lookahead, xr), screen.X_RES)):
input_pixel = np.copy(ideal_dither[y, xx, :])
input_pixel_lab = rgb_to_lab(input_pixel)
ideal_dither_lab[y, xx, :] = input_pixel_lab
output_pixel = screen.find_closest_color(input_pixel_lab,
palette_choices,
palette_choices_lab,
differ)
quant_error = input_pixel - output_pixel
ideal_dither[y, xx, :] = output_pixel
# XXX don't care about other y values
dither.apply(screen, ideal_dither, xx, y, quant_error)
return ideal_dither_lab
def dither_lookahead(
2021-01-08 22:44:28 +00:00
screen: Screen, image_lab: np.ndarray, dither: Dither,
differ: ColourDistance, x, y, last_pixel_lab, lookahead) -> np.ndarray:
et, eb, el, er, yt, yb, xl, xr = dither.dither_bounds(screen, x, y)
# TODO: propagate quantization error
options_rgb, options_lab = lookahead_options(screen, lookahead,
tuple(last_pixel_lab), x % 4)
error = np.empty((lookahead, min(max(x + lookahead, xr), screen.X_RES) -
x), dtype=np.float32)
for i in range(min(max(x + lookahead, xr), screen.X_RES) - x):
error[:, i] = differ.distance(image_lab[y, x + i, :],
options_lab[:, i])
total_error = np.sum(np.power(error, 2), axis=1)
best = np.argmin(total_error)
return options_rgb[best, 0, :], options_lab[best, 0, :]
def dither_image(
2021-01-08 22:44:28 +00:00
screen: Screen, image_rgb: np.ndarray, dither: Dither, differ:
ColourDistance, lookahead) -> np.ndarray:
2021-01-08 22:44:28 +00:00
image_lab = rgb_to_lab(image_rgb)
for y in range(screen.Y_RES):
print(y)
2021-01-08 22:44:28 +00:00
output_pixel_lab = rgb_to_lab(np.array((0, 0, 0), dtype=np.float32))
for x in range(screen.X_RES):
2021-01-08 22:44:28 +00:00
input_pixel_rgb = image_rgb[y, x, :]
# Make sure lookahead region is updated from previously applied
# dithering
et, eb, el, er, yt, yb, xl, xr = dither.dither_bounds(screen, x, y)
image_lab[y, x:xr, :] = rgb_to_lab(image_rgb[y, x:xr, :])
# ideal_lab = ideal_dither(screen, image_rgb, image_lab, dither,
# differ, x, y, lookahead)
output_pixel_rgb, output_pixel_lab = dither_lookahead(
screen, image_lab, dither, differ, x, y, output_pixel_lab,
lookahead)
quant_error = input_pixel_rgb - output_pixel_rgb
image_rgb[y, x, :] = output_pixel_rgb
dither.apply(screen, image_rgb, x, y, quant_error)
# if y == 1:
# return
return image_rgb
def main():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, help="Input file to process")
parser.add_argument("output", type=str, help="Output file for ")
2021-01-08 22:44:28 +00:00
parser.add_argument(
"--lookahead", type=int, default=4,
help=("How many pixels to look ahead to compensate for NTSC colour "
"artifacts."))
args = parser.parse_args()
# screen = DHGR140Screen()
screen = DHGR560Screen()
image = open_image(screen, args.input)
# image.show()
# dither = FloydSteinbergDither()
# dither = BuckelsDither()
dither = JarvisDither()
differ = CIE2000Distance()
# differ = CCIR601Distance()
2021-01-08 22:44:28 +00:00
output = dither_image(screen, image, dither, differ,
lookahead=args.lookahead)
output_lab = rgb_to_lab(output)
screen.pack(output_lab)
out_image = Image.fromarray(linear_to_srgb(output).astype(np.uint8))
2021-01-08 22:44:28 +00:00
outfile = os.path.join(os.path.splitext(args.output)[0] + ".png")
out_image.save(outfile, "PNG")
out_image.show(title=outfile)
# bitmap = Image.fromarray(screen.bitmap.astype('uint8') * 255)
with open(args.output, "wb") as f:
f.write(bytes(screen.main))
f.write(bytes(screen.aux))
if __name__ == "__main__":
2021-01-08 22:44:28 +00:00
main()