Checkpoint WIP for easier comparison to dhgr branch:

- naive version of NTSC artifacting, it uses a sliding 4-bit window to
  assign a nominal (D)HGR colour to each dot position.  A more
  sophisticated/correct implementation would model the YIQ signal
  directly.

- Switch DHGRBitmap implementation to use a 34-bit representation of
  the 4-byte tuple, comprised of a 3-bit header and footer, plus
  4*7=28-bit body.  The headers/footers account for the influence on
  neighbouring tuples from the 4-bit NTSC window.

- With this model each screen byte influences 13 pixels, so we need to
  precompute 2^26 edit distances for all possible (source, target)
  13-bit sequences.

- Checkpointing not-yet-working HGR implementation.

- Add new unit tests but not yet all passing due to refactoring
This commit is contained in:
kris 2019-07-02 22:40:50 +01:00
parent e2a8bd9b4d
commit 666272a8fc
9 changed files with 1268 additions and 367 deletions

View File

@ -1,25 +1,140 @@
"""Apple II logical display colours."""
"""Apple II nominal display colours, represented by 4-bit dot sequences.
These are distinct from the effective colours that are actually displayed,
e.g. due to white/black coalescing and NTSC artifacting.
"""
from typing import Tuple, Type
import enum
import functools
class DHGRColours(enum.Enum):
def ror(int4: int, howmany: int) -> int:
"""Rotate-right an int4 some number of times."""
res = int4
for _ in range(howmany):
res = _ror(res)
return res
def _ror(int4: int) -> int:
return ((int4 & 0b1110) >> 1) ^ ((int4 & 0b0001) << 3)
def rol(int4: int, howmany: int) -> int:
"""Rotate-left an int4 some number of times."""
res = int4
for _ in range(howmany):
res = _rol(res)
return res
def _rol(int4: int) -> int:
return ((int4 & 0b0111) << 1) ^ ((int4 & 0b1000) >> 3)
class NominalColours(enum.Enum):
pass
class HGRColours(NominalColours):
# Value is memory bit order, which is opposite to screen order (bits
# ordered Left to Right on screen)
BLACK = 0b0000
MAGENTA = 0b0001
BROWN = 0b1000
ORANGE = 0b1001 # HGR colour
DARK_GREEN = 0b0100
GREY1 = 0b0101
GREEN = 0b1100 # HGR colour
YELLOW = 0b1101
DARK_BLUE = 0b0010
VIOLET = 0b0011 # HGR colour
GREY2 = 0b1010
PINK = 0b1011
MED_BLUE = 0b0110 # HGR colour
LIGHT_BLUE = 0b0111
AQUA = 0b1110
WHITE = 0b1111
class DHGRColours(NominalColours):
# DHGR 4-bit memory representation is right-rotated from the HGR video
# representation.
BLACK = 0b0000
MAGENTA = 0b1000
BROWN = 0b0100
ORANGE = 0b1100
ORANGE = 0b1100 # HGR colour
DARK_GREEN = 0b0010
GREY1 = 0b1010
GREEN = 0b0110
GREEN = 0b0110 # HGR colour
YELLOW = 0b1110
DARK_BLUE = 0b0001
VIOLET = 0b1001
VIOLET = 0b1001 # HGR colour
GREY2 = 0b0101
PINK = 0b1101
MED_BLUE = 0b0011
MED_BLUE = 0b0011 # HGR colour
LIGHT_BLUE = 0b1011
AQUA = 0b0111
WHITE = 0b1111
# @functools.lru_cache(None)
# def int28_to_nominal_colour_pixels2(int28):
# return tuple(
# HGRColours(
# (int28 & (0b1111 << (4 * i))) >> (4 * i)) for i in range(7)
# )
@functools.lru_cache(None)
def int34_to_nominal_colour_pixels(
int34: int,
colours: Type[NominalColours],
init_phase: int = 1 # Such that phase = 0 at start of 28-bit body
) -> Tuple[NominalColours]:
"""Produce sequence of 31 nominal colour pixels via sliding 4-bit window.
Includes the 3-bit header that represents the trailing 3 bits of the
previous 28-bit tuple. i.e. storing a byte in aux even columns will also
influence the colours of the previous main odd column.
This naively models the NTSC colour artifacting.
TODO: Use a more careful colour composition model to produce effective
pixel colours.
TODO: DHGR vs HGR colour differences can be modeled by changing init_phase
"""
res = []
shifted = int34
phase = init_phase
# Omit trailing 3 bits which are only there to provide a trailer for
# bits 28..31
for i in range(31):
colour = rol(shifted & 0b1111, phase)
res.append(colours(colour))
shifted >>= 1
phase += 1
if phase == 4:
phase = 0
return tuple(res)
@functools.lru_cache(None)
def int34_to_nominal_colour_pixel_values(
int34: int,
colours: Type[NominalColours],
init_phase: int = 1 # Such that phase = 0 at start of 28-bit body
) -> Tuple[int]:
return tuple(p.value for p in int34_to_nominal_colour_pixels(
int34, colours, init_phase
))

107
transcoder/colours_test.py Normal file
View File

@ -0,0 +1,107 @@
import unittest
import colours
HGRColours = colours.HGRColours
class TestColours(unittest.TestCase):
def test_int28_to_pixels(self):
self.assertEqual(
(
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.DARK_BLUE,
HGRColours.MED_BLUE,
HGRColours.AQUA,
HGRColours.AQUA,
HGRColours.GREEN,
HGRColours.BROWN,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
),
colours.int34_to_nominal_colour_pixels(
0b00000000000000000000111000000000, HGRColours
)
)
self.assertEqual(
(
HGRColours.BLACK,
HGRColours.MAGENTA,
HGRColours.VIOLET,
HGRColours.LIGHT_BLUE,
HGRColours.WHITE,
HGRColours.AQUA,
HGRColours.GREEN,
HGRColours.BROWN,
HGRColours.BLACK,
HGRColours.MAGENTA,
HGRColours.VIOLET,
HGRColours.LIGHT_BLUE,
HGRColours.WHITE,
HGRColours.AQUA,
HGRColours.GREEN,
HGRColours.BROWN,
HGRColours.BLACK,
HGRColours.MAGENTA,
HGRColours.VIOLET,
HGRColours.LIGHT_BLUE,
HGRColours.WHITE,
HGRColours.AQUA,
HGRColours.GREEN,
HGRColours.BROWN,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK,
HGRColours.BLACK
),
colours.int34_to_nominal_colour_pixels(
0b0000111100001111000011110000, HGRColours
)
)
class TestRolRoR(unittest.TestCase):
def testRolOne(self):
self.assertEqual(0b1111, colours.rol(0b1111, 1))
self.assertEqual(0b0001, colours.rol(0b1000, 1))
self.assertEqual(0b1010, colours.rol(0b0101, 1))
def testRolMany(self):
self.assertEqual(0b1111, colours.rol(0b1111, 3))
self.assertEqual(0b0010, colours.rol(0b1000, 2))
self.assertEqual(0b0101, colours.rol(0b0101, 2))
def testRorOne(self):
self.assertEqual(0b1111, colours.ror(0b1111, 1))
self.assertEqual(0b1000, colours.ror(0b0001, 1))
self.assertEqual(0b0101, colours.ror(0b1010, 1))
def testRoRMany(self):
self.assertEqual(0b1111, colours.ror(0b1111, 3))
self.assertEqual(0b1000, colours.ror(0b0010, 2))
self.assertEqual(0b0101, colours.ror(0b0101, 2))
if __name__ == "__main__":
unittest.main()

View File

@ -1,6 +1,8 @@
import bz2
import functools
import pickle
import time
import datetime
from typing import Iterable, Type
import colormath.color_conversions
@ -77,54 +79,8 @@ def pixel_char(i: int) -> str:
@functools.lru_cache(None)
def pixel_string(pixels: Iterable[colours.DHGRColours]) -> str:
return "".join(pixel_char(p.value) for p in pixels)
@functools.lru_cache(None)
def pixels_influenced_by_byte_index(
pixels: str,
idx: int) -> str:
"""Return subset of pixels that are influenced by given byte index (0..4)"""
start, end = {
0: (0, 1),
1: (1, 3),
2: (3, 5),
3: (5, 6)
}[idx]
return pixels[start:end + 1]
@functools.lru_cache(None)
def int28_to_pixels(int28):
return tuple(
palette.DHGRColours(
(int28 & (0b1111 << (4 * i))) >> (4 * i)) for i in range(7)
)
# TODO: these duplicates byte_mask32/byte_shift from DHGRBitmap
# Map n-bit int into 32-bit masked value
def map_int8_to_mask32_0(int8):
assert 0 <= int8 < 2 ** 8, int8
return int8
def map_int12_to_mask32_1(int12):
assert 0 <= int12 < 2 ** 12, int12
return int12 << 4
def map_int12_to_mask32_2(int12):
assert 0 <= int12 < 2 ** 12, int12
return int12 << 12
def map_int8_to_mask32_3(int8):
assert 0 <= int8 < 2 ** 8, int8
return int8 << 20
def pixel_string(pixels: Iterable[int]) -> str:
return "".join(pixel_char(p) for p in pixels)
class EditDistanceParams:
@ -179,7 +135,6 @@ def make_substitute_costs(pal: Type[palette.BasePalette]):
return edp
@functools.lru_cache(None)
def edit_distance(
edp: EditDistanceParams,
a: str,
@ -199,66 +154,70 @@ def edit_distance(
def make_edit_distance(edp: EditDistanceParams):
edit = [
np.zeros(shape=(2 ** 16), dtype=np.int16),
np.zeros(shape=(2 ** 24), dtype=np.int16),
np.zeros(shape=(2 ** 24), dtype=np.int16),
np.zeros(shape=(2 ** 16), dtype=np.int16),
np.zeros(shape=(2 ** 26), dtype=np.uint16),
np.zeros(shape=(2 ** 26), dtype=np.uint16),
np.zeros(shape=(2 ** 26), dtype=np.uint16),
np.zeros(shape=(2 ** 26), dtype=np.uint16),
]
for i in range(2 ** 8):
print(i)
for j in range(2 ** 8):
pair = (i << 8) + j
start_time = time.time()
first = map_int8_to_mask32_0(i)
second = map_int8_to_mask32_0(j)
for i in range(2 ** 13):
if i > 1:
now = time.time()
eta = datetime.timedelta(
seconds=(now - start_time) * (2 ** 13 / i))
print("%.2f%% (ETA %s)" % (100 * i / (2 ** 13), eta))
for j in range(2 ** 13):
pair = (i << 13) + j
first_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(first)), 0)
second_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(second)), 0)
# Each DHGR byte offset has the same range of int13 possible
# values and nominal colour pixels, but with different initial
# phases:
# AUX 0: 0 (1 at start of 3-bit header)
# MAIN 0: 3 (0)
# AUX 1: 2 (3)
# MAIN 1: 1 (2)
first_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
i, colours.DHGRColours, init_phase=1)
)
second_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
j, colours.DHGRColours, init_phase=1))
edit[0][pair] = edit_distance(
edp, first_pixels, second_pixels, error=False)
first = map_int8_to_mask32_3(i)
second = map_int8_to_mask32_3(j)
first_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(first)), 3)
second_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(second)), 3)
edit[3][pair] = edit_distance(
edp, first_pixels, second_pixels, error=False)
for i in range(2 ** 12):
print(i)
for j in range(2 ** 12):
pair = (i << 12) + j
first = map_int12_to_mask32_1(i)
second = map_int12_to_mask32_1(j)
first_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(first)), 1)
second_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(second)), 1)
first_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
i, colours.DHGRColours, init_phase=0)
)
second_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
j, colours.DHGRColours, init_phase=0))
edit[1][pair] = edit_distance(
edp, first_pixels, second_pixels, error=False)
first = map_int12_to_mask32_2(i)
second = map_int12_to_mask32_2(j)
first_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(first)), 2)
second_pixels = pixels_influenced_by_byte_index(
pixel_string(int28_to_pixels(second)), 2)
first_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
i, colours.DHGRColours, init_phase=3)
)
second_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
j, colours.DHGRColours, init_phase=3))
edit[2][pair] = edit_distance(
edp, first_pixels, second_pixels, error=False)
first_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
i, colours.DHGRColours, init_phase=2)
)
second_pixels = pixel_string(
colours.int34_to_nominal_colour_pixel_values(
j, colours.DHGRColours, init_phase=2))
edit[3][pair] = edit_distance(
edp, first_pixels, second_pixels, error=False)
return edit
@ -269,7 +228,7 @@ def main():
edit = make_edit_distance(edp)
# TODO: error distance matrices
data = "transcoder/data/palette_%d_edit_distance.pickle" \
data = "transcoder/data/DHGR_palette_%d_edit_distance.pickle" \
".bz2" % p.ID.value
with bz2.open(data, "wb", compresslevel=9) as out:
pickle.dump(edit, out, protocol=pickle.HIGHEST_PROTOCOL)

View File

@ -1,12 +1,12 @@
import unittest
from colours import DHGRColours
from colours import HGRColours
import make_data_tables
class TestMakeDataTables(unittest.TestCase):
def test_pixel_string(self):
pixels = (DHGRColours.BLACK, DHGRColours.WHITE, DHGRColours.ORANGE)
pixels = (HGRColours.BLACK, HGRColours.WHITE, HGRColours.ORANGE)
self.assertEqual("0FC", make_data_tables.pixel_string(pixels))
def test_pixels_influenced_by_byte_index(self):
@ -22,39 +22,6 @@ class TestMakeDataTables(unittest.TestCase):
make_data_tables.pixels_influenced_by_byte_index(pixels, 1)
)
def test_int28_to_pixels(self):
self.assertEqual(
(
DHGRColours.BLACK,
DHGRColours.BLACK,
DHGRColours.YELLOW,
DHGRColours.BLACK,
DHGRColours.BLACK,
DHGRColours.BLACK,
DHGRColours.BLACK,
),
tuple(
make_data_tables.int28_to_pixels(
0b00000000000000000000111000000000)
)
)
self.assertEqual(
(
DHGRColours.BLACK,
DHGRColours.WHITE,
DHGRColours.BLACK,
DHGRColours.WHITE,
DHGRColours.BLACK,
DHGRColours.WHITE,
DHGRColours.BLACK,
),
tuple(
make_data_tables.int28_to_pixels(
0b0000111100001111000011110000)
)
)
def test_map_to_mask32(self):
byte_mask32 = [
# 33222222222211111111110000000000 <- bit pos in uint32

View File

@ -3,7 +3,7 @@ from typing import Dict, Type
import colormath.color_objects
from colours import DHGRColours
from colours import HGRColours
# Type annotation
RGB = colormath.color_objects.sRGBColor
@ -24,7 +24,7 @@ class BasePalette:
ID = Palette.UNKNOWN # type: Palette
# Palette RGB map
RGB = {} # type: Dict[DHGRColours: RGB]
RGB = {} # type: Dict[HGRColours: RGB]
class NTSCPalette(BasePalette):
@ -32,22 +32,22 @@ class NTSCPalette(BasePalette):
# Palette RGB values taken from BMP2DHGR's default NTSC palette
RGB = {
DHGRColours.BLACK: rgb(0, 0, 0),
DHGRColours.MAGENTA: rgb(148, 12, 125),
DHGRColours.BROWN: rgb(99, 77, 0),
DHGRColours.ORANGE: rgb(249, 86, 29),
DHGRColours.DARK_GREEN: rgb(51, 111, 0),
DHGRColours.GREY1: rgb(126, 126, 126),
DHGRColours.GREEN: rgb(67, 200, 0),
DHGRColours.YELLOW: rgb(221, 206, 23),
DHGRColours.DARK_BLUE: rgb(32, 54, 212),
DHGRColours.VIOLET: rgb(188, 55, 255),
DHGRColours.GREY2: rgb(126, 126, 126),
DHGRColours.PINK: rgb(255, 129, 236),
DHGRColours.MED_BLUE: rgb(7, 168, 225),
DHGRColours.LIGHT_BLUE: rgb(158, 172, 255),
DHGRColours.AQUA: rgb(93, 248, 133),
DHGRColours.WHITE: rgb(255, 255, 255)
HGRColours.BLACK: rgb(0, 0, 0),
HGRColours.MAGENTA: rgb(148, 12, 125),
HGRColours.BROWN: rgb(99, 77, 0),
HGRColours.ORANGE: rgb(249, 86, 29),
HGRColours.DARK_GREEN: rgb(51, 111, 0),
HGRColours.GREY1: rgb(126, 126, 126),
HGRColours.GREEN: rgb(67, 200, 0),
HGRColours.YELLOW: rgb(221, 206, 23),
HGRColours.DARK_BLUE: rgb(32, 54, 212),
HGRColours.VIOLET: rgb(188, 55, 255),
HGRColours.GREY2: rgb(126, 126, 126),
HGRColours.PINK: rgb(255, 129, 236),
HGRColours.MED_BLUE: rgb(7, 168, 225),
HGRColours.LIGHT_BLUE: rgb(158, 172, 255),
HGRColours.AQUA: rgb(93, 248, 133),
HGRColours.WHITE: rgb(255, 255, 255)
}
@ -56,22 +56,22 @@ class IIGSPalette(BasePalette):
# Palette RGB values taken from BMP2DHGR's KEGS32 palette
RGB = {
DHGRColours.BLACK: rgb(0, 0, 0),
DHGRColours.MAGENTA: rgb(221, 0, 51),
DHGRColours.BROWN: rgb(136, 85, 34),
DHGRColours.ORANGE: rgb(255, 102, 0),
DHGRColours.DARK_GREEN: rgb(0, 119, 0),
DHGRColours.GREY1: rgb(85, 85, 85),
DHGRColours.GREEN: rgb(0, 221, 0),
DHGRColours.YELLOW: rgb(255, 255, 0),
DHGRColours.DARK_BLUE: rgb(0, 0, 153),
DHGRColours.VIOLET: rgb(221, 0, 221),
DHGRColours.GREY2: rgb(170, 170, 170),
DHGRColours.PINK: rgb(255, 153, 136),
DHGRColours.MED_BLUE: rgb(34, 34, 255),
DHGRColours.LIGHT_BLUE: rgb(102, 170, 255),
DHGRColours.AQUA: rgb(0, 255, 153),
DHGRColours.WHITE: rgb(255, 255, 255)
HGRColours.BLACK: rgb(0, 0, 0),
HGRColours.MAGENTA: rgb(221, 0, 51),
HGRColours.BROWN: rgb(136, 85, 34),
HGRColours.ORANGE: rgb(255, 102, 0),
HGRColours.DARK_GREEN: rgb(0, 119, 0),
HGRColours.GREY1: rgb(85, 85, 85),
HGRColours.GREEN: rgb(0, 221, 0),
HGRColours.YELLOW: rgb(255, 255, 0),
HGRColours.DARK_BLUE: rgb(0, 0, 153),
HGRColours.VIOLET: rgb(221, 0, 221),
HGRColours.GREY2: rgb(170, 170, 170),
HGRColours.PINK: rgb(255, 153, 136),
HGRColours.MED_BLUE: rgb(34, 34, 255),
HGRColours.LIGHT_BLUE: rgb(102, 170, 255),
HGRColours.AQUA: rgb(0, 255, 153),
HGRColours.WHITE: rgb(255, 255, 255)
}

View File

@ -3,10 +3,11 @@
import bz2
import functools
import pickle
from typing import Union, List
from typing import Union, List, Optional
import numpy as np
import palette
import palette as pal
# Type annotation for cases where we may process either an int or a numpy array.
IntOrArray = Union[int, np.ndarray]
@ -124,55 +125,334 @@ class MemoryMap:
self.page_offset[page - self._page_start][offset] = val
class DHGRBitmap:
BYTE_MASK32 = [
# 3333333222222211111110000000 <- byte 0.3
#
# 33222222222211111111110000000000 <- bit pos in uint32
# 10987654321098765432109876543210
# 0000GGGGFFFFEEEEDDDDCCCCBBBBAAAA <- pixel A..G
# 3210321032103210321032103210 <- bit pos in A..G pixel
0b00000000000000000000000011111111, # byte 0 influences A,B
0b00000000000000001111111111110000, # byte 1 influences B,C,D
0b00000000111111111111000000000000, # byte 2 influences D,E,F
0b00001111111100000000000000000000, # byte 3 influences F,G
]
@functools.lru_cache(None)
def _edit_distances(name: str, palette_id: pal.Palette) -> List[np.ndarray]:
"""Load edit distance matrices for masked, shifted byte values.
# How much to right-shift bits after masking to bring into int8/int12 range
BYTE_SHIFTS = [0, 4, 12, 20]
This is defined at module level to be a singleton.
"""
data = "transcoder/data/%s_palette_%d_edit_distance.pickle.bz2" % (
name,
palette_id.value
)
with bz2.open(data, "rb") as ed:
return pickle.load(ed) # type: List[np.ndarray]
@staticmethod
@functools.lru_cache(None)
def edit_distances(palette_id: palette.Palette) -> List[np.ndarray]:
"""Load edit distance matrices for masked, shifted byte 0..3 values."""
data = "transcoder/data/palette_%d_edit_distance.pickle.bz2" % (
palette_id.value
)
with bz2.open(data, "rb") as ed:
return pickle.load(ed) # type: List[np.ndarray]
def __init__(self, main_memory: MemoryMap, aux_memory: MemoryMap):
self.main_memory = main_memory
self.aux_memory = aux_memory
class Bitmap:
"""Packed 28-bit bitmap representation of (D)HGR screen memory.
self.packed = np.empty(shape=(32, 128), dtype=np.uint32)
The memory layout is still page-oriented, not linear y-x buffer but the
bit map is such that 20 consecutive entries linearly encode the 28*20 =
560-bit monochrome dot positions that underlie both Mono and Colour (
D)HGR screens.
For Colour display the (nominal) colours are encoded as 4-bit pixels.
"""
def __init__(
self,
palette: pal.Palette,
main_memory: MemoryMap,
aux_memory: Optional[MemoryMap]
):
self.palette = palette # type: pal.Palette
self.main_memory = main_memory # type: MemoryMap
self.aux_memory = aux_memory # type: Optional[MemoryMap]
self.packed = np.empty(
shape=(32, 128), dtype=np.uint64) # type: np.ndarray
self._pack()
def _pack(self) -> None:
"""Interleave and pack aux and main memory into 28-bit uint32 array"""
"""Pack MemoryMap into 34-bit representation."""
raise NotImplementedError
NAME = None
@functools.lru_cache(None)
def edit_distances(self, palette_id: pal.Palette) -> List[np.ndarray]:
"""Load edit distance matrices for masked, shifted byte values."""
return _edit_distances(self.NAME, palette_id)
def apply(
self,
page: int,
offset: np.uint8,
is_aux: bool,
value: np.uint8) -> None:
raise NotImplementedError
@functools.lru_cache(None)
def byte_pair_difference(
self,
byte_offset: int,
old_packed: int,
content: int
) -> int:
raise NotImplementedError
def diff_weights(
self,
other: "DHGRBitmap",
is_aux: bool
) -> np.ndarray:
raise NotImplementedError
def compute_delta(
self,
content: int,
old: np.ndarray,
is_aux: bool
) -> np.ndarray:
raise NotImplementedError
class HGRBitmap(Bitmap):
BYTE_MASK16 = [
# 11111110000000 <- byte 0, 1
# 1111110000000000
# 5432109876543210
# 00GGFFEEDDCCBBAA <- pixel A..G
0b0000000011111111,
0b0011111111000000
]
# Representation
#
# 1111110000000000
# 5432109876543210
# PGGFFEEDPDCCBBAA
#
# Where palette bit influences all of the pixels in the byte
#
# Map to 3-bit pixels, i.e. 21-bit quantity
#
# 222211111111110000000000
# 321098765432109876543210
# 000PGGPFFPEEPDDPCCPBBPAA
BYTE_MASK32 = [
0b000000000000111111111111,
0b000111111111111000000000
]
# XXX 3-bit pixel isn't quite correct, e.g. the case of conflicting
# palette bits across byte boundary
# Also hard to interleave the palette bit in multiple places - could use
# a mapping array but maybe don't need to, can just use 8-bit values as is?
# But need contiguous representation for edit distance tables
# P
# (0)00 --> 0.0.
# (0)01 --> 0.1.
#
# (1)01 --> .0.1
# (1)11 --> .1.1
# etc
#
BYTE_SHIFTS = [0, 9]
NAME = 'HGR'
def __init__(self, palette: pal.Palette, main_memory: MemoryMap):
super(HGRBitmap, self).__init__(palette, main_memory, None)
def _pack(self) -> None:
"""Pack main memory into (28+3)-bit uint64 array"""
# 00000000001111111111222222222233
# 01234567890123456789012345678901
# AAAABBBBCCCCDDd
# AAAABBBBCCCCDd
# DDEEEEFFFFGGGGg
# dDDEEEEFFFFGGGg
# Even, P0: store unshifted (0..14)
# Even, P1: store shifted << 1 (1..15) (only need 1..14)
# Odd, P0: store shifted << 14 (14 .. 28) - set bit 14 as bit 0 of next
# byte
# Odd, p1: store shifted << 15 (15 .. 29) (only need 15 .. 28) - set
# bit 13 as bit 0 of next byte
# Odd overflow only matters for even, P1
# - bit 0 is either bit 14 if odd, P0 or bit 13 if odd, P1
# - but these both come from the undoubled bit 6.
main = self.main_memory.page_offset.astype(np.uint64)
# Double 7-bit pixel data from a into 14-bit fat pixels, and extend MSB
# into 15-bits tohandle case when subsequent byte has palette bit set,
# i.e. is right-shifted by 1 dot. This only matters for even bytes
# with P=0 that are followed by odd bytes with P=1; in other cases
# this extra bit will be overwritten.
double = (
# Bit pos 6
((main & 0x40) << 8) + ((main & 0x40) << 7) + (
(main & 0x40) << 6)) + (
# Bit pos 5
((main & 0x20) << 6) + ((main & 0x20) << 5)) + (
# Bit pos 4
((main & 0x10) << 5) + ((main & 0x10) << 4)) + (
# Bit pos 3
((main & 0x08) << 4) + ((main & 0x08) << 3)) + (
# Bit pos 2
((main & 0x04) << 3) + ((main & 0x04) << 2)) + (
# Bit pos 1
((main & 0x02) << 2) + ((main & 0x02) << 1)) + (
# Bit pos 0
((main & 0x01) << 1) + (main & 0x01))
a_even = main[:, ::2]
a_odd = main[:, 1::2]
double_even = double[:, ::2]
double_odd = double[:, 1::2]
# Place even offsets at bits 1..15 (P=1) or 0..14 (P=0)
packed = np.where(a_even & 0x80, double_even << 1, double_even)
# Place off offsets at bits 15..27 (P=1) or 14..27 (P=0)
packed = np.where(
a_odd & 0x80,
np.bitwise_xor(
np.bitwise_and(packed, (2 ** 15 - 1)),
double_odd << 15
),
np.bitwise_xor(
np.bitwise_and(packed, (2 ** 14 - 1)),
double_odd << 14
)
)
# Patch up even offsets with P=1 with extended bit from previous odd
# column
previous_odd = np.roll(a_odd, 1, axis=1).astype(np.uint64)
packed = np.where(
a_even & 0x80,
# Truncate to 28-bits and set bit 0 from bit 6 of previous byte
np.bitwise_xor(
np.bitwise_and(packed, (2 ** 28 - 2)),
(previous_odd & (1 << 6)) >> 6
),
# Truncate to 28-bits
np.bitwise_and(packed, (2 ** 28 - 1))
)
# Append first 3 bits of next even byte so we can correctly
# decode the effective colours at the end of the 28-bit tuple
trailing = np.roll(packed, -1, axis=1).astype(np.uint64)
packed = np.bitwise_xor(
packed,
(trailing & 0b111) << 28
)
self.packed = packed
@staticmethod
@functools.lru_cache(None)
def byte_offset(x_byte: int) -> int:
"""Returns 0..1 offset in ByteTuple for a given x_byte,"""
is_odd = x_byte % 2 == 1
return 1 if is_odd else 0
@staticmethod
def masked_update(
byte_offset: int,
old_value: IntOrArray,
new_value: int) -> IntOrArray:
raise NotImplementedError
def apply(self, page: int, offset: int, is_aux: bool, value: int) -> None:
"""Update packed representation of changing main/aux memory."""
assert not is_aux
# XXX fix
byte_offset = self.byte_offset(offset)
packed_offset = offset // 2
self.packed[page, packed_offset] = self.masked_update(
byte_offset, self.packed[page, packed_offset], value)
# XXXX Generic?
def mask_and_shift_data(
self,
data: IntOrArray,
byte_offset: int) -> IntOrArray:
"""Masks and shifts data into the 8 or 12-bit range."""
return (data & self.BYTE_MASK32[byte_offset]) >> (
self.BYTE_SHIFTS[byte_offset])
class DHGRBitmap(Bitmap):
# NOTE: See https://github.com/numpy/numpy/issues/2524 and related issues
# for why we have to cast things explicitly to np.uint64 - type promotion
# to uint64 is broken in numpy :(
# 3-bit header + 28-bit body + 3-bit trailer
BYTE_MASK34 = [
# 3333333222222211111110000000 <- byte 0.3
#
# 3333222222222211111111110000000000 <- bit pos in uint64
# 3210987654321098765432109876543210
# tttGGGGFFFFEEEEDDDDCCCCBBBBAAAAhhh <- pixel A..G
# 3210321032103210321032103210 <- bit pos in A..G pixel
np.uint64(0b0000000000000000000001111111111111), # byte 0 int13 mask
np.uint64(0b0000000000000011111111111110000000), # byte 1 int13 mask
np.uint64(0b0000000111111111111100000000000000), # byte 2 int13 mask
np.uint64(0b1111111111111000000000000000000000), # byte 3 int13 mask
]
# How much to right-shift bits after masking to bring into int13 range
BYTE_SHIFTS = [np.uint64(0), np.uint64(7), np.uint64(14), np.uint64(21)]
NAME = 'DHGR'
def _pack(self) -> None:
"""Interleave and pack aux and main memory into 34-bit uint64 array"""
# Palette bit is unused for DHGR so mask it out
aux = (self.aux_memory.page_offset & 0x7f).astype(np.uint32)
main = (self.main_memory.page_offset & 0x7f).astype(np.uint32)
aux = (self.aux_memory.page_offset & 0x7f).astype(np.uint64)
main = (self.main_memory.page_offset & 0x7f).astype(np.uint64)
# Interleave aux and main memory columns and pack 7-bit masked values
# into a 28-bit value. This sequentially encodes 7 4-bit DHGR pixels.
# into a 28-bit value, with 3-bit header and trailer. This
# sequentially encodes 7 4-bit DHGR pixels, together with the
# neighbouring 3 bits that are necessary to decode artifact colours.
#
# See make_data_tables.py for more discussion about this representation.
self.packed = (
aux[:, 0::2] +
(main[:, 0::2] << 7) +
(aux[:, 1::2] << 14) +
(main[:, 1::2] << 21)
packed = (
(aux[:, 0::2] << 3) +
(main[:, 0::2] << 10) +
(aux[:, 1::2] << 17) +
(main[:, 1::2] << 24)
)
# Prepend last 3 bits of previous main odd byte so we can correctly
# decode the effective colours at the beginning of the 28-bit
# tuple
prevcol = np.roll(packed, 1, axis=1).astype(np.uint64)
# Append first 3 bits of next aux even byte so we can correctly
# decode the effective colours at the end of the 28-bit tuple
nextcol = np.roll(packed, -1, axis=1).astype(np.uint64)
self.packed = np.bitwise_xor(
np.bitwise_xor(
packed,
# Prepend last 3 bits of 28-bit body from previous column
(prevcol & (0b111 << 28)) >> 28
),
# Append first 3 bits of 28-bit body from next column
(nextcol & (0b111 << 3)) << 28
)
@staticmethod
@ -190,31 +470,207 @@ class DHGRBitmap:
else:
return 1
# XXX test
@staticmethod
def masked_update(
def masked_update_scalar(
byte_offset: int,
old_value: IntOrArray,
new_value: int) -> IntOrArray:
old_value: np.uint64,
new_value: np.uint8) -> np.uint64:
# Mask out 7-bit value where update will go
masked_value = old_value & ~(0x7f << (7 * byte_offset))
masked_value = old_value & (
~np.uint64(0x7f << (7 * byte_offset + 3)))
update = (new_value & 0x7f) << (7 * byte_offset)
update = (new_value & np.uint64(0x7f)) << np.uint64(
7 * byte_offset + 3)
return masked_value ^ update
new = masked_value ^ update
return new
def apply(self, page: int, offset: int, is_aux: bool, value: int) -> None:
# XXX test
@staticmethod
def masked_update_array(
byte_offset: int,
old_value: np.ndarray,
new_value: int) -> np.ndarray:
# Mask out 7-bit value where update will go
masked_value = old_value & (
~np.uint64(0x7f << (7 * byte_offset + 3)))
update = (new_value & np.uint64(0x7f)) << np.uint64(7 * byte_offset + 3)
new = masked_value ^ update
# TODO: don't leak headers across screen rows.
if byte_offset == 0:
# Need to also update the 3-bit trailer of the preceding column
shifted = np.roll(new, -1, axis=1)
new &= np.uint64(2 ** 31 - 1)
new ^= (shifted & np.uint64(0b111 << 3)) << np.uint64(28)
elif byte_offset == 3:
# Need to also update the 3-bit header of the next column
shifted = np.roll(new, 1, axis=1)
new &= np.uint64((2 ** 31 - 1) << 3)
new ^= (shifted & np.uint64(0b111 << 28)) >> np.uint64(28)
return new
# XXX test
def apply(
self,
page: int,
offset: int,
is_aux: bool,
value: np.uint8) -> None:
"""Update packed representation of changing main/aux memory."""
byte_offset = self.interleaved_byte_offset(offset, is_aux)
packed_offset = offset // 2
self.packed[page, packed_offset] = self.masked_update(
self.packed[page, packed_offset] = self.masked_update_scalar(
byte_offset, self.packed[page, packed_offset], value)
# TODO: don't leak headers/trailers across screen rows.
if byte_offset == 0 and packed_offset > 0:
# Need to also update the 3-bit trailer of the preceding column
self.packed[page, packed_offset - 1] &= np.uint64(2 ** 31 - 1)
self.packed[page, packed_offset - 1] ^= (
(self.packed[page, packed_offset] & np.uint64(0b111 << 3))
<< np.uint64(28)
)
elif byte_offset == 3 and packed_offset < 127:
# Need to also update the 3-bit header of the next column
self.packed[page, packed_offset + 1] &= np.uint64(
(2 ** 31 - 1) << 3)
self.packed[page, packed_offset + 1] ^= (
(self.packed[page, packed_offset] & np.uint64(0b111 << 28))
>> np.uint64(28)
)
def mask_and_shift_data(
self,
data: IntOrArray,
byte_offset: int) -> IntOrArray:
"""Masks and shifts data into the 8 or 12-bit range."""
return (data & self.BYTE_MASK32[byte_offset]) >> (
"""Masks and shifts data into the 13-bit range."""
res = (data & self.BYTE_MASK34[byte_offset]) >> (
self.BYTE_SHIFTS[byte_offset])
assert np.all(res <= 2 ** 13)
return res
@functools.lru_cache(None)
def byte_pair_difference(
self,
byte_offset: int,
old_packed: np.uint64,
content: np.uint8
) -> int:
old_pixels = self.mask_and_shift_data(
old_packed, byte_offset)
new_pixels = self.mask_and_shift_data(
self.masked_update_scalar(
byte_offset, old_packed, content), byte_offset)
pair = (old_pixels << np.uint64(13)) + new_pixels
return self.edit_distances(self.palette)[byte_offset][pair]
def diff_weights(
self,
source: "DHGRBitmap",
is_aux: bool
) -> np.ndarray:
return self._diff_weights(source.packed, is_aux)
def _diff_weights(
self,
source_packed: np.ndarray,
is_aux: bool
) -> np.ndarray:
"""Computes diff from source_packed to self.packed"""
diff = np.ndarray((32, 256), dtype=np.int)
if is_aux:
offsets = [0, 2]
else:
offsets = [1, 3]
dists = []
for o in offsets:
# Pixels influenced by byte offset o
source_pixels = self.mask_and_shift_data(source_packed, o)
target_pixels = self.mask_and_shift_data(self.packed, o)
# Concatenate 13-bit source and target into 26-bit values
pair = (source_pixels << np.uint64(13)) + target_pixels
dist = self.edit_distances(self.palette)[o][pair].reshape(
pair.shape)
dists.append(dist)
diff[:, 0::2] = dists[0]
diff[:, 1::2] = dists[1]
return diff
def compute_delta(
self,
content: int,
old: np.ndarray,
is_aux: bool
) -> np.ndarray:
# TODO: use error edit distance
# XXX reuse code
diff = np.ndarray((32, 256), dtype=np.int)
if is_aux:
# Pixels influenced by byte offset 0
source_pixels0 = self.mask_and_shift_data(
self.masked_update_array(0, self.packed, content), 0)
target_pixels0 = self.mask_and_shift_data(self.packed, 0)
# Concatenate 13-bit source and target into 26-bit values
pair0 = (source_pixels0 << np.uint64(13)) + target_pixels0
dist0 = self.edit_distances(self.palette)[0][pair0].reshape(
pair0.shape)
# Pixels influenced by byte offset 2
source_pixels2 = self.mask_and_shift_data(
self.masked_update_array(2, self.packed, content), 2)
target_pixels2 = self.mask_and_shift_data(self.packed, 2)
# Concatenate 13-bit source and target into 26-bit values
pair2 = (source_pixels2 << np.uint64(13)) + target_pixels2
dist2 = self.edit_distances(self.palette)[2][pair2].reshape(
pair2.shape)
diff[:, 0::2] = dist0
diff[:, 1::2] = dist2
else:
# Pixels influenced by byte offset 1
source_pixels1 = self.mask_and_shift_data(
self.masked_update_array(1, self.packed, content), 1)
target_pixels1 = self.mask_and_shift_data(self.packed, 1)
pair1 = (source_pixels1 << np.uint64(13)) + target_pixels1
dist1 = self.edit_distances(self.palette)[1][pair1].reshape(
pair1.shape)
# Pixels influenced by byte offset 3
source_pixels3 = self.mask_and_shift_data(
self.masked_update_array(3, self.packed, content), 3)
target_pixels3 = self.mask_and_shift_data(self.packed, 3)
pair3 = (source_pixels3 << np.uint64(13)) + target_pixels3
dist3 = self.edit_distances(self.palette)[3][pair3].reshape(
pair3.shape)
diff[:, 0::2] = dist1
diff[:, 1::2] = dist3
# TODO: try different weightings
return (diff * 5) - old

View File

@ -4,6 +4,7 @@ import unittest
import numpy as np
import colours
import screen
@ -184,5 +185,411 @@ class TestDHGRBitmap(unittest.TestCase):
)
def binary(a):
return np.vectorize("{:032b}".format)(a)
class TestHGRBitmap(unittest.TestCase):
def setUp(self) -> None:
self.main = screen.MemoryMap(screen_page=1)
def test_pixel_packing_p0_p0(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b01000011
# PGGFFEED
self.main.page_offset[0, 1] = 0b01000011
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b1100000000111111000000001111
got = hgr.packed[0, 0]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
def test_pixel_packing_p0_p1(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b01000011
# PGGFFEED
self.main.page_offset[0, 1] = 0b11000011
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b1000000001111111000000001111
got = hgr.packed[0, 0]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
def test_pixel_packing_p1_p0(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b11000011
# PGGFFEED
self.main.page_offset[0, 1] = 0b01000011
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b1100000000111110000000011110
got = hgr.packed[0, 0]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
def test_pixel_packing_p1_p1(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b11000011
# PGGFFEED
self.main.page_offset[0, 1] = 0b11000011
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b1000000001111110000000011110
got = hgr.packed[0, 0]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
def test_pixel_packing_p1_promote_p0(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b00000000
# PGGFFEED
self.main.page_offset[0, 1] = 0b01000000
# PDCCBBAA
self.main.page_offset[0, 2] = 0b10000000
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b0000000000000000000000000001
got = hgr.packed[0, 1]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
def test_pixel_packing_p1_promote_p1(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b00000000
# PGGFFEED
self.main.page_offset[0, 1] = 0b11000000
# PDCCBBAA
self.main.page_offset[0, 2] = 0b10000000
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b0000000000000000000000000001
got = hgr.packed[0, 1]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
def testNominalColours(self):
# PDCCBBAA
self.main.page_offset[0, 0] = 0b01010101
# PGGFFEED
self.main.page_offset[0, 1] = 0b00101010
# PDCCBBAA
self.main.page_offset[0, 2] = 0b01010101
hgr = screen.HGRBitmap(
main_memory=self.main)
want = 0b000110011001100110011001100110011
got = hgr.packed[0, 0]
self.assertEqual(
want, got, "\n%s\n%s" % (binary(want), binary(got))
)
self.assertEqual(
(
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
colours.HGRColours.VIOLET,
),
colours.int34_to_nominal_colour_pixels(hgr.packed[0, 0],
colours.HGRColours)
)
# See Figure 8.15 from Sather, "Understanding the Apple IIe"
def testNominalColoursSather1(self):
# Extend violet into light blue
# PDCCBBAA
self.main.page_offset[0, 0] = 0b01000000
# PGGFFEED
self.main.page_offset[0, 1] = 0b10000000
hgr = screen.HGRBitmap(
main_memory=self.main)
self.assertEqual(
(
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.LIGHT_BLUE,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
),
colours.int28_to_nominal_colour_pixels(hgr.packed[0, 0],
colours.HGRColours)
)
def testNominalColoursSather2(self):
# Cut off blue with black to produce dark blue
# PDCCBBAA
self.main.page_offset[0, 0] = 0b11000000
# PGGFFEED
self.main.page_offset[0, 1] = 0b00000000
hgr = screen.HGRBitmap(
main_memory=self.main)
self.assertEqual(
(
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.DARK_BLUE,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
),
colours.int28_to_nominal_colour_pixels(hgr.packed[0, 0],
colours.HGRColours)
)
def testNominalColoursSather3(self):
# Cut off blue with green to produce aqua
# PDCCBBAA
self.main.page_offset[0, 0] = 0b11000000
# PGGFFEED
self.main.page_offset[0, 1] = 0b00000001
hgr = screen.HGRBitmap(
main_memory=self.main)
self.assertEqual(
(
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,
colours.HGRColours.AQUA,
colours.HGRColours.BLACK,
colours.HGRColours.BLACK,