There's no "standard" coordinate system, so the choice is arbitrary.
However, an examination of the Transporter mesh in Elite revealed
that the mesh was designed for a left-handed coordinate system. We
can compensate for that trivially in the Elite visualizer, but we
might as well match what they're doing. (The only change required
in the code is a couple of sign changes on the Z coordinate, and an
update to the rotation matrix.)
This also downsizes Matrix44 to Matrix33, exposes the rotation mode
enum, and adds a left-handed ZYX rotation mode.
This does mean that meshes that put the front at +Z will show their
backsides initially, since we're now oriented as if we're flying
the ships rather than facing them. I considered adding a 180-degree
Y rotation (with a tweak to the rotation matrix handedness to correct
the first rotation axis) to have them facing by default, but figured
that might be confusing since +Z is supposed to be away.
Anybody who really wants it to be the other way can trivially flip
the coordinates in their visualizer (negate xc/zc).
The Z coordinates in the visualization test project were flipped so
that the design is still facing the viewer at rotation (0,0,0).
Experimented with different orders of rotation for wireframe viewer.
Made perspective projection the default behavior. Removed animation
parameters from the stored Visualization when it's not animated.
Also, tweak the perspective projection scaling to fill out the area
a bit more, and change the visualization editor to use the grid's
size when setting the path dimensions.
Also, note gimbal lock.
Added a new category "sprite sheet", which is essentially a more
generalized version of the bitmap font renderer. It has the full
set of options for col/row/cell stride and colors. (Issue #74,
issue #75)
Added a flag that flips the high bits on bitmaps. Sometimes data
is stored with the high bit clear, but the high bit is set as it's
rendered. (Issue #76)
Also, fixed the keyboard shortcuts in the Edit Visualization Set
window, which were 'N' for both "New ___" items. (Issue #57)
Added "show undocumented opcodes" checkbox, so you can choose
whether or not to see them at all. (Issue #60)
Added formatter call for the instruction mnemonics so they get
capitalized when the app is configured for upper-case opcodes.
(Issue #59)
Fix a bug where the instruction chart and ASCII chart were writing
their modes to the same setting, stomping each other.
Also, pluralized a button in the file concatenator.
For nonzero values we were leaving Z=prev, which is wrong when Z=0
because the AND result might be zero. Now if Z=1 we leave it alone,
but if Z=0 we now set it to Z=?.
Test 1003-flags-and-branches was testing for the (incorrect)
behavior, so we're now running into a BRK. This is fine.
We're generating names that nothing links to. The names aren't
guaranteed unique, so they're of dubious value anyway.
Also, fixed the Atari 2600 visualizer script filename in sys defs.
Should be solid/transparent not white/black. Added a blue color
to the palette to use for sprites, as white + transparent disappears
completely on web pages with a white background.
Black + white + grey seems fine for playfields.
The tool allows you to cut a piece out of a file by specifying an
offset and a length. A pair of hex dumps helps you verify that the
positions are correct.
Also, minor cleanups elsewhere.
Defined a simple monochrome bitmap format, and created some pieces
for a Tic-Tac-Toe game. Wrote a tutorial that explains how to
visualize them.
Also, updated some comments.
If you have a single line selected, Set Address adds a .ORG directive
that changes the addresses of all following data, until the next .ORG
directive is reached. Sometimes code will relocate part of itself,
and it's useful to be able to set the address at the end of the block
to what it would have been before the .ORG change.
If you have multiple lines selected, we now add the second .ORG to
the offset that follows the last selected line.
Also, fixed a bug in the Symbol value updater that wasn't handling
non-unique labels correctly.
As with still images, animations are rendered at original size and
then scaled with HTML properties.
Also, fixed the blurry scaling on animation thumbnails. I couldn't
find a way to do nearest-neighbor scaling in the code-behind without
resorting to System.Drawing (WinForms), so I added an overlay image
to the various grids.
Visualization animations are now exported as animated GIFs. The
Windows stuff is a bit lame so I threw together some code that
stitches a bunch of GIFs together.
The GIF doesn't quite match the preview, because the preview scales
the individual frames, while the animated GIF uses the largest frame
as the size and is then scaled based on that. Animating frames of
differing sizes together is bound to be trouble anyway, so I'm not
sure how much to fret over this.
This adds a new class and a rough GUI for the editor. Animated
visualizations take a collection of bitmaps and display them in
sequence. (This will eventually become an animated GIF.)
Fixed the issue where changes to tags in the set currently being
edited weren't visible to the tag uniqueness check when editing other
items in the same set.
We now generate GIF images for visualizations and add inline
references to them in the HTML output.
Images are scaled using the HTML img properties. This works well
on some browsers, but others insist on "smooth" scaling that blurs
out the pixels. This may require a workaround.
An extra blank line is now added above visualizations. This helps
keep the image and data visually grouped.
The Apple II bitmap test project was updated to have a visualization
set with multiple images at the top of the file.
(1) Added an option to limit the number of bytes per line. This is
handy for things like bitmaps, where you might want to put (say) 3
or 8 bytes per line to reflect the structure.
(2) Added an application setting that determines whether the screen
listing shows Merlin/ACME dense hex (20edfd) or 64tass/cc65 hex bytes
($20,$ed,$fd). Made the setting part of the assembler-driven display
definitions. Updated 64tass+cc65 to use ".byte" as their dense hex
pseudo-op, and to use the updated formatter code. No changes to
regression test output.
(Changes were requested in issue #42.)
Also, added a resize gripper to the bottom-right corner of the main
window. (These seem to have generally fallen out of favor, but I
like having it there.)
Added comments, renamed files, removed cruft.
Stop showing the visualization tag name in the code list. It's
often redundant with the code label, and it's distracting. (We may
want to make this an option so you can Ctrl+F to find a tag.)
First swing at a visualizer for Atari 2600 sprites and playfields.
Won't necessarily present an accurate view of what is displayed on
screen, but should provide a reasonable shape for data stored in
the obvious way.
The Adventure playfields looked squashed, so I added a simple row
duplication value.
Also, minor improvements to visualizers generally:
- Throw an exception, rather than an Assert, in VisBitmap8 when the
arguments are bad.
- Show the exception in the Visualization Edit dialog.
- If generation fails and we don't have an error message, show a
generic "stuff be broke" string.
- Set focus on OK button in Visualization Set Edit after editing,
so you can hit Enter twice after renaming a tag.
Various changes:
- Generally treat visualization sets like long comments and notes
when it comes to defining data region boundaries. (We were doing
this for selections; now we're also doing it for format-as-word
and in the data analyzer when scanning for strings/fill.)
- Clear the visualization cache when the address map is altered.
This is necessary for visualizers that dereference addresses.
- Read the Apple II screen image from a series of addresses rather
than a series of offsets. This allows it to work when the image
is contiguous in memory but split into chunks in the file.
- Put 1 pixel of padding around the images in the main code list,
so they don't blend into the background.
- Remember the last visualizer used, so we can re-use it the next
time the user selects "new".
- Move min-size hack from Loaded to ContentRendered, as it apparently
spoils CenterOwner placement.
Report visualization generation errors through an explicit
IApplication interface, instead of pulling messages out of the
DebugLog stream.
Declare that GetVisGenDescrs() is only called when the plugin is in
the "prepared" state, so that plugins can taylor the set based on
the contents of the file. (This could be used to set min/max on
the "offset" entries, but I want special handling for offsets, so
we might as well set it later.)
Bitmap fonts are a series of (usually) 1x8 bitmaps, which we arrange
into a grid of cells.
Screen images are useful for embedded screens, or for people who want
to display stand-alone image files as disassembly projects.
Various improvements:
- Switched to ReadOnlyDictionary in Visualization to make it clear
that the parameter dictionary should not be modified.
- Added a warning to the Visualization Set editor that appears when
there are no plugins that implement a visualizer.
- Make sure an item is selected in the set editor after edit/remove.
- Replaced the checkerboard background with one that's a little bit
more grey, so it's more distinct from white pixel data.
- Added a new Apple II hi-res color converter whose output more
closely matches KEGS and AppleWin RGB.
- Added VisHiRes.cs to some Apple II system definitions.
- Added some test bitmaps for Apple II hi-res to the test directory.
(These are not part of an automated test.)
Thumbnails are now visible in the main list and in the visualization
set editor. They're generated on first need, and regenerated when
the set of plugins changes.
Added a checkerboard background for the visualization editor bitmap
preview. (It looks all official now.)
The Visualization and Visualization Set editors are now fully
functional. You can create, edit, and rearrange sets, and they're
now stored in the project file.
Implemented Apple II hi-res bitmap conversion. Supports B&W and
color. Uses essentially the same algorithm as CiderPress.
Experimented with displaying non-text items in ListView. I assumed
it would work, since it's the sort of thing WPF is designed to do,
but it's always wise to approach with caution. Visualization Sets
now show a 64x64 button as a placeholder for the eventual thumbnail.
Some things were being flaky, which turned out to be because I
wasn't Prepare()ing the plugins before using them from Edit
Visualization. To make this a deterministic failure I added an
Unprepare() call that tells the plugin that we're all done.
NOTE: this breaks all existing plugins.
Added some rudimentary bitmap creation code. Got a test pattern
generated by the plugin to display in the app. (Most of the time
required for this was spent figuring out how bitmaps are handled
in WPF.)
Got parameter in/out working in EditVisualization dialog. Did some
rearranging in PluginCommon interfaces and data structures. Still
doesn't do anything useful.
Basic infrastructure for taking a list of parameters from a plugin
and turning it into a collection of UI controls, merging in values
from a Visualization object. Doesn't yet do anything useful.
WPF makes the hard things easy and the easy things hard. This was
a hard thing, so it was easy to do (with some helpful sample code).
Yay WPF?
Updated documentation for non-unique label changes. Added a new
section to tutorial #1.
Updated examples to use non-unique labels and variable tables.
Tweaked the EditLabel radio button names.
This adds the concept of label annotations. The primary driver of
the feature is the desire to note that sometimes you know what a
thing is, but sometimes you're just taking an educated guess.
Instead of writing "high_score_maybe", you can now write "high_score?",
which is more compact and consistent. The annotations are stripped
off when generating source code, making them similar to Notes.
I also created a "Generated" annotation for the labels that are
synthesized by the address table formatter, but don't modify the
label for them, because there's not much need to remind the user
that "T1234" was generated by algorithm.
This also lays some of the groundwork for non-unique labels.
Jumps to the first offset associated with the change at the top of
the Undo stack. We generally jump to the code/data offset, not the
specific line affected. It's possible to do better (and we do, for
Notes), but probably not worthwhile.
Copied the extension script tutorial files out of the Scripts
directory and into the Tutorial directory. This makes more sense,
and makes it possible to expand the script sample without altering
the tutorial.
Reverted the Scripts sample to be an actual sample, rather than a
tutorial.
Renumbered the last two tutorials and added them to the ToC. This
gives them actual numbers rather than treating them as add-ons to
the advanced tutorial.
Moved the source files for the tutorial binaries into a subdirectory
to reduce clutter.
This does mean we have two separate copies of the inline string
sample plugins, but that's an artifact of our attempts at security.
Project symbol address values are now limited to positive 24-bit
integers, just as they are for platform symbols. Constants may
still be 32-bit values.
While disassembling some code I found that I wanted the ROM entry
points, but the zero page usage was significantly different and the
ROM labels were distracting. Splitting the symbol file in two was
a possibility, but I'm afraid this will lead to a very large
collection of very small files, and we'll lose any sense of relation
between the ROM entry points and the ZP addresses used to pass
arguments.
Platform symbols have the lowest priority when resolving by address,
but using that to hide the unwanted labels requires creating project
symbols or local variables for things that you might not know what
they do yet. It's possible to hide a platform symbol by adding
another symbol with the same label and an invalid value.
This change formalizes and extends the "hiding" of platform symbols
to full erasure, so that they don't clutter up the symbol table.
This also tightens up the platform symbol parser to only accept
values in the range 0 <= value <= 0x00ffffff (24-bit positive
integers).
An "F8-ROM-nozp" symbol file is now part of the standard set. A
project can include that to erase the zero-page definitions.
(I'm not entirely convinced this is the right approach, so I'm not
doing this treatment on other symbol files... consider this an
experiment. Another approach would be some sort of conditional
inclusion, or perhaps erase-by-tag, but that requires some UI work
in the app to define what you want included or excluded.)
- Allow user to "unnecessarily" set an address override. This is
a handy thing to do when dealing with code that does a lot of
relocations.
- Moved "save needed" text to the end of the title string.
- Updated F8-ROM syms.
- Added ProDOS 8 error code constants
If we detect a problem that requires intervention during loading,
e.g. we find unknown elements because we're loading a file created
by a newer version, default to read-only mode.
Read only mode (1) refuses to apply changes, (2) refuses to add
changes to the undo/redo list, and (3) disables Save/SaveAs. The
mode is indicated in the title bar.
Also, flipped the order of items in the title bar so that "6502bench
SourceGen" comes last. This allows you to read the project name in
short window title snippets. (Visual Studio, Notepad, and others
do it this way as well.)
Sometimes code relocates a few bits of itself but not others. We
don't currently have a way to say, "go back to where we would have
been". As a cheap alternative, we now show the "load address", i.e.
where we'd be if there were no address map entries after the first.
The "affected flags" constants were incorrect for BIT, BRK, COP,
RTI, XCE, and the undocmented instructions ANE, DCP, and SAX. The
constants are used for the changed-flag summary shown in the info
window and the instruction chart.
Of greater import: the status flag updater for BIT was incorrectly
marking N/V/C as indeterminate instead of N/V/Z. The undocmented
instructions ANE, DCP, and SAX were also incorrect.
The cycle counts shown in line comments are computed correctly, but
the counts shown in the info window and instruction chart were
displaying the full set of modifiers, ignoring the CPU type. That's
okay for the info window, which spells the modifiers out, though
it'd be better if the bits were explicitly marked as being applicable
to the current CPU or a different one.
Mark the "info" window as read-only.
When the project closes, clear the contents of the Symbols and
Notes windows.
Clarify some Apple II I/O definitions.
This adds a window that displays all of the instructions for a
given CPU in a summary grid. Undocumented instructions are
included, but shown in grey italics.
Also, tweaked AppSettings to not mark itself as dirty if a "set"
operation doesn't actually change anything.
Implemented show/hide mechanic, using a button on the right side of
the status bar to show status and to trigger un-hide.
Also, show I/O direction in project symbols editor list.
Created a Navigate menu, and put the menu items for Find and Go To
in it. Added menu items for nav-forward and nav-backward, which
until now were only available as toolbar buttons.
Sometimes there's a bunch of junk in the binary that isn't used for
anything. Often it's there to make things line up at the start of
a page boundary.
This adds a ".junk" directive that tells the disassembler that it
can safely disregard the contents of a region. If the region ends
on a power-of-two boundary, an alignment value can be specified.
The assembly source generators will output an alignment directive
when possible, a .fill directive when appropriate, and a .dense
directive when all else fails. Because we're required to regenerate
the original data file, it's not always possible to avoid generating
a hex dump.
Sort of silly to have every handler immediately pull the operand out
of the file data. (This is arguably less efficient, since we now
have to serialize the argument across the AppDomain boundary, but
we should be okay spending a few extra nanoseconds here.)
Memory-mapped I/O locations can have different behavior when read
vs. written. This is part 1 of a change to allow two different
symbols to represent the same address, based on I/O direction.
This also adds a set of address masks for systems like the Atari
2600 that map hardware addresses to multiple locations.
This change updates the data structures, .sym65 file reader,
project serialization, and DefSymbol editor.
We were failing to update properly when a label changed if the label
was one that a plugin cared about. The problem is that a label
add/remove operation skips the code analysis, and a label edit skips
everything but the display update. Plugins only run during the code
analysis pass, so changes weren't being reflected in the display
list until something caused it to refresh.
The solution is to ask the plugin if the label being changed is one
that it cares about. This allows the plugin to use the same
wildcard-match logic that it uses elsewhere.
For efficiency, and to reduce clutter in plugins that don't care
about symbols, a new interface class has been created to handle the
"here are the symbols" call and the "do you care about this label"
call.
The program in Examples/Scripts has been updated to show a very
simple single-call plugin and a slightly more complex multi-call
plugin.
Most of SourceGen uses standard WPF controls, which get their default
style from the system theme. The main disassembly list uses a
custom style, and always looks like the Windows default theme.
Some people greatly prefer white text on a black background, so we
now provide a way to get that. This also requires muting the colors
used for Notes, since those were chosen to contrast with black text.
This does not affect anything other than the ListView used for
code, because everything else can be set through the Windows
"personalization" interface. We might want to change the way the
Notes window looks though, to avoid having glowing bookmarks on
the side.
The last two tabs in the Edit App Settings dialog have "quick set"
buttons configure all fields for a particular assembler, or reset
them to default values. The previous UI was a little annoying,
because you had to pick something from the combo box and then hit
"set" to push the change. It was also confusing, because if you
came back later the combo box was just set to the first entry, not
the thing you picked last.
Now, picking an entry from the combo box immediately updates all
fields. The combo box selection is set to reflect the actual
contents (so if you set everything just right, the combo box will
change to a specific assembler). If nothing matches, a special
entry labeled "Custom" is selected.
Also, rearranged the tutorial sections in the manual so the
address table formatting comes last, and appears in the local TOC.
The Find box now has forward/backward radio buttons. Find Next
searches forward, and Find Previous searches backward, regardless
of the direction of the initial search.
The standard key sequence for "find previous" is Shift+F3. The WPF
ListView has some weird logic that does something like: if you hit
a key, and the selection changes, and the shift key was held down,
then you must have meant to select a range. So Shift+F3 often (but
not always) selects a range. I think this might be fixable if I can
figure out how ListView keeps track of the current keyboard
navigation position (which is not the same as the selection). For
now I'm working around the problem by using Ctrl+F3 to search.
Yay WPF.
Early data sheets listed BRK as one byte, but RTI after a BRK skips
the following byte, effectively making BRK a 2-byte instruction.
Sometimes, such as when diassembling Apple /// SOS code, it's handy
to treat it that way explicitly.
This change makes two-byte BRKs optional, controlled by a checkbox
in the project settings. In the system definitions it defaults to
true for Apple ///, false for all others.
ACME doesn't allow BRK to have an arg, and cc65 only allows it for
65816 code (?), so it's emitted as a hex blob for those assemblers.
Anyone wishing to target those assemblers should stick to 1-byte mode.
Extension scripts have to switch between formatting one byte of
inline data and formatting an instruction with a one-byte operand.
A helper function has been added to the plugin Util class.
To get some regression test coverage, 2022-extension-scripts has
been configured to use two-byte BRK.
Also, added/corrected some SOS constants.
See also issue #44.
The "add platform symbol file" and "add extension script" buttons
create a file dialog with the initial directory set to the
RuntimeData directory inside the SourceGen installation directory.
This is great if you're trying to add a file from the platform
definitions, but annoying if you're trying to add it from the
project directory.
It's really convenient to not have to hunt around though, so now
there are two buttons: one for platform, one for project. The
latter is disabled if the project is new and hasn't been saved yet.
If it's a known function, apply basic numeric formatting to the
various fields. Primarily of value for the pathname and buffer
parameters, which are formatted as addresses.
Also, enable horizontal scrolling in the generic show-text dialog.
The current AddressMap is now passed into the plugin manager, which
wraps it in an AddressTranslate object and passes that to the
plugins at Prepare() time. This allows plugins to convert addresses
to offsets, making it possible to format complex structures.
This breaks existing plugins.
If we have a bug, or somebody edits the project file manually, we
can end up with a very wrong string, such as a null-terminated
string that isn't, or a DCI string that has a mix of high and low
ASCII from start to finish. We now check all incoming strings for
validity, and discard any that fail the test. The verification
code is shared with the extension script inline data formatter.
Also, added a comment to an F8-ROM symbol I stumbled over.
Extension scripts (a/k/a "plugins") can now apply any data format
supported by FormatDescriptor to inline data. In particular, it can
now handle variable-length inline strings. The code analyzer
verifies the string structure (e.g. null-terminated strings have
exactly one null byte, at the very end).
Added PluginException to carry an exception back to the plugin code,
for occasions when they're doing something so wrong that we just
want to smack them.
Added test 2022-extension-scripts to exercise the feature.
We were providing platform symbols to plugins through the PlatSym
list, which allowed them to find constants and well-known addresses.
We now pass all project symbols and user labels in as well. The
name "PlatSym" is no longer accurate, so the class has been renamed.
Also, added a bunch of things to the problem list viewer, and
added some more info to the Info panel.
Also, added a minor test to 2011-hinting that does not affect the
output (which is the point).
Handle situation where a symbol wraps around a bank. Updated
2021-external-symbols for that, and to test the behavior when file
data and an external symbol overlap.
The bank-wrap test turned up a bug in Merlin 32. A workaround has
been added.
Updated documentation to explain widths.
The ability to give explicit widths to local variables worked out
pretty well, so we're going to try adding the same thing to project
and platform symbols.
The first step is to allow widths to be specified in platform files,
and set with the project symbol editor. The DefSymbol editor is
also used for local variables, so a bit of dancing is required.
For platform/project symbols the width is optional, and is totally
ignored for constants. (For variables, constants are used for the
StackRel args, so the width is meaningful and required.)
We also now show the symbol's type (address or constant) and width
in the listing. This gets really distracting when overused, so we
only show it when the width is explicitly set. The default width
is 1, which most things will be, so users can make an aesthetic
choice there. (The place where widths make very little sense is when
the symbol represents a code entry point, rather than a data item.)
The maximum width of a local variable is now 256, but it's not
allowed to overlap with other variables or run of the end of the
direct page. The maximum width of a platform/project symbol is
65536, with bank-wrap behavior TBD.
The local variable table editor now refers to stack-relative
constants as such, rather than simply "constant", to make it clear
that it's not just defining an 8-bit constant.
Widths have been added to a handful of Apple II platform defs.
Change + save + undo + change was being treated as non-dirty.
Added link to "export" feature to documentation TOC.
Added keyboard shortcut for high part in data operand editor.
Corrected various things in the tutorial.
Added a blank line after local variable tables. Otherwise they
just sort of blend in with the stuff around them.
Put prefixes before the DOS 3.3 platform symbols.
Added a BAS_HBASH entry. We were getting BAS_HBASL and MON_GBASH
paired up, which looks weird.
Apply a very light tint to the preview section of the Edit Long
Comment dialog, to hint that the window is read-only.
Having underlined blue text everywhere was too noisy. This changes
the CSS style for internal links to be plain black text that gets
blue and underliney when you hover the mouse over it.
Also, added the current date and time to the set of template
substitutions.