1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Machines/Apple/AppleIIgs/ADB.cpp

295 lines
8.7 KiB
C++
Raw Normal View History

2020-11-01 01:00:15 +00:00
//
// ADB.cpp
// Clock Signal
//
// Created by Thomas Harte on 31/10/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#include "ADB.hpp"
#include <cassert>
2020-11-01 01:00:15 +00:00
#include <cstdio>
#include <iostream>
2020-11-01 01:00:15 +00:00
// TEST.
#include "../../../InstructionSets/M50740/Parser.hpp"
#include "../../../InstructionSets/Disassembler.hpp"
#define LOG_PREFIX "[ADB GLU] "
#include "../../../Outputs/Log.hpp"
2020-11-01 01:00:15 +00:00
using namespace Apple::IIgs::ADB;
namespace {
// Flags affecting the CPU-visible status register.
enum class CPUFlags: uint8_t {
MouseDataFull = 0x80,
MouseInterruptEnabled = 0x40,
CommandDataIsValid = 0x20,
CommandDataInterruptEnabled = 0x10,
KeyboardDataFull = 0x08,
KeyboardDataInterruptEnabled = 0x04,
MouseXIsAvailable = 0x02,
CommandRegisterFull = 0x01,
};
// Flags affecting the microcontroller-visible register.
enum class MicrocontrollerFlags: uint8_t {
CommandRegisterFull = 0x40,
};
}
2021-02-14 04:16:45 +00:00
GLU::GLU() :
executor_(*this),
bus_(HalfCycles(1'789'772)),
controller_id_(bus_.add_device()),
mouse_(bus_),
keyboard_(bus_) {}
// MARK: - External interface.
2020-11-01 01:00:15 +00:00
uint8_t GLU::get_keyboard_data() {
// The classic Apple II serial keyboard register:
// b7: key strobe.
// b6b0: ASCII code.
return (registers_[0] & 0x7f) | ((status_ & uint8_t(CPUFlags::KeyboardDataFull)) ? 0x80 : 0x00);
2020-11-01 01:00:15 +00:00
}
void GLU::clear_key_strobe() {
// Clears the key strobe of the classic Apple II serial keyboard register.
status_ &= ~uint8_t(CPUFlags::KeyboardDataFull);
}
uint8_t GLU::get_any_key_down() {
// The Apple IIe check-for-any-key-down bit.
return registers_[5];
}
2020-11-01 01:00:15 +00:00
uint8_t GLU::get_mouse_data() {
// Alternates between returning x and y values.
//
// b7: 1 = button is up; 0 = button is down.
// b6: delta sign bit; 1 = negative.
// b5b0: mouse delta.
const uint8_t result = registers_[visible_mouse_register_];
if(visible_mouse_register_ == 3) {
status_ &= ~uint8_t(CPUFlags::MouseDataFull);
}
// Spelt out at tedious length because Clang has trust issues.
static constexpr int first_register = 2;
static constexpr int second_register = 3;
static constexpr int flip_mask = first_register ^ second_register;
visible_mouse_register_ ^= flip_mask;
return result;
2020-11-01 01:00:15 +00:00
}
uint8_t GLU::get_modifier_status() {
// b7: 1 = command key pressed; 0 = not.
// b6: option key.
// b5: 1 = modifier key latch has been updated, no key has been pressed; 0 = not.
// b4: any numeric keypad key.
// b3: a key is down.
// b2: caps lock is pressed.
// b1: control key.
// b0: shift key.
return registers_[6];
2020-11-01 01:00:15 +00:00
}
uint8_t GLU::get_data() {
// b02: number of data bytes to be returned.
// b3: 1 = a valid service request is pending; 0 = no request pending.
// b4: 1 = control, command and delete keys have been pressed simultaneously; 0 = they haven't.
// b5: 1 = control, command and reset have all been pressed together; 0 = they haven't.
// b6: 1 = ADB controller encountered an error and reset itself; 0 = no error.
// b7: 1 = ADB has received a response from the addressed ADB device; 0 = no respone.
status_ &= ~uint8_t(CPUFlags::CommandDataIsValid);
return registers_[7];
2020-11-01 01:00:15 +00:00
}
uint8_t GLU::get_status() {
// b7: 1 = mouse data register is full; 0 = empty.
// b6: 1 = mouse interrupt is enabled.
// b5: 1 = command/data has valid data.
// b4: 1 = command/data interrupt is enabled.
// b3: 1 = keyboard data is full.
// b2: 1 = keyboard data interrupt is enabled.
// b1: 1 = mouse x-data is available; 0 = y.
// b0: 1 = command register is full (set when command is written); 0 = empty (cleared when data is read).
return status_ | ((visible_mouse_register_ == 2) ? 0 : uint8_t(CPUFlags::MouseXIsAvailable));
2020-11-01 01:00:15 +00:00
}
2021-02-15 02:04:20 +00:00
void GLU::set_status(uint8_t status) {
// This permits only the interrupt flags to be set.
constexpr uint8_t interrupt_flags =
uint8_t(CPUFlags::MouseInterruptEnabled) |
uint8_t(CPUFlags::CommandDataInterruptEnabled) |
uint8_t(CPUFlags::KeyboardDataInterruptEnabled);
status_ = (status_ & ~interrupt_flags) | (status & interrupt_flags);
}
void GLU::set_command(uint8_t command) {
registers_[1] = command;
registers_[4] |= uint8_t(MicrocontrollerFlags::CommandRegisterFull);
status_ |= uint8_t(CPUFlags::CommandRegisterFull);
2020-11-01 01:00:15 +00:00
}
// MARK: - Setup and run.
void GLU::set_microcontroller_rom(const std::vector<uint8_t> &rom) {
executor_.set_rom(rom);
// TEST invocation.
/* InstructionSet::Disassembler<InstructionSet::M50740::Parser, 0x1fff, InstructionSet::M50740::Instruction, uint8_t, uint16_t> disassembler;
disassembler.disassemble(rom.data(), 0x1000, uint16_t(rom.size()), 0x1000);
const auto instructions = disassembler.instructions();
const auto entry_points = disassembler.entry_points();
for(const auto &pair : instructions) {
std::cout << std::hex << pair.first << "\t\t";
if(entry_points.find(pair.first) != entry_points.end()) {
std::cout << "L" << pair.first << "\t";
} else {
std::cout << "\t\t";
}
std::cout << operation_name(pair.second.operation) << " ";
std::cout << address(pair.second.addressing_mode, &rom[pair.first - 0x1000], pair.first);
std::cout << std::endl;
}*/
}
void GLU::run_for(Cycles cycles) {
executor_.run_for(cycles);
}
// MARK: - M50470 port handler
void GLU::set_port_output(int port, uint8_t value) {
switch(port) {
case 0:
register_latch_ = value;
break;
case 1:
// printf("Keyboard write: %02x???\n", value);
break;
case 2: {
// printf("ADB data line input: %d???\n", value >> 7);
// printf("IIe keyboard reset line: %d\n", (value >> 6)&1);
// printf("IIgs reset line: %d\n", (value >> 5)&1);
// printf("GLU strobe: %d\n", (value >> 4)&1);
// printf("Select GLU register: %d [%02x]\n", value & 0xf, value);
register_address_ = value & 0xf;
// This is an ugly hack, I think. Per Neil Parker's Inside the Apple IIGS ADB Controller
// http://nparker.llx.com/a2/adb.html#external:
//
// The protocol for reading an ADB GLU register is as follows:
//
// 1. Put the register number of the ADB GLU register in port P2 bits 0-3.
// 2. Clear bit 4 of port P2, read the data from P0, and set bit 4 of P0.
//
// The protocol for writing a GLU register is similar:
//
// 1. Write the register number to port P2 bits 0-3.
// 2. Write the data to port P0.
// 3. Configure port P0 for output by writing $FF to $E1.
// 4. Clear bit 4 of P2, and immediately set it again.
// 5. Configure port P0 for input by writing 0 to $E1.
//
// ---
//
// I tried: linking a read or write to rising or falling edges of the strobe.
// Including with hysteresis as per the "immediately" (which, in practice, seems
// to mean "in the very next instruction", i.e. 5 cycles later). That didn't seem
// properly to differentiate.
//
// So I'm focussing on the "configure port P0 for output" bit. Which I don't see
// would be visible here unless it is actually an exposed signal, which is unlikely.
//
// Ergo: ugly. HACK.
const bool strobe = value & 0x10;
if(strobe != register_strobe_) {
register_strobe_ = strobe;
if(!register_strobe_) {
if(executor_.get_output_mask(0)) {
registers_[register_address_] = register_latch_;
switch(register_address_) {
default: break;
case 0: status_ |= uint8_t(CPUFlags::KeyboardDataFull); break;
case 2:
case 3:
status_ |= uint8_t(CPUFlags::MouseDataFull);
visible_mouse_register_ = 2;
break;
case 7: status_ |= uint8_t(CPUFlags::CommandDataIsValid); break;
}
} else {
register_latch_ = registers_[register_address_];
switch(register_address_) {
default: break;
case 1:
registers_[4] &= ~uint8_t(MicrocontrollerFlags::CommandRegisterFull);
status_ &= ~uint8_t(CPUFlags::CommandRegisterFull);
break;
}
}
}
}
} break;
2021-02-11 02:24:31 +00:00
case 3:
if(modifier_state_ != (value & 0x30)) {
modifier_state_ = value & 0x30;
LOG("Modifier state: " << int(value & 0x30));
}
// Output is inverted respective to input; the microcontroller
// sets a value of '1' in order to pull the ADB bus low.
2021-02-11 02:24:31 +00:00
bus_.set_device_output(controller_id_, !(value & 0x08));
break;
default: assert(false);
}
}
2021-02-15 02:15:31 +00:00
bool GLU::get_command_button() const {
return modifier_state_ & 0x20;
}
bool GLU::get_option_button() const {
return modifier_state_ & 0x10;
}
uint8_t GLU::get_port_input(int port) {
switch(port) {
case 0: return register_latch_;
case 1:
// printf("IIe keyboard read\n");
return 0x06;
case 2:
// printf("ADB data line input, etc\n");
2021-02-11 02:24:31 +00:00
return bus_.get_state() ? 0x80 : 0x00;
case 3:
// printf("ADB data line output, etc\n");
return 0x00;
default: assert(false);
}
return 0xff;
}
void GLU::run_ports_for(Cycles cycles) {
2021-02-11 02:24:31 +00:00
bus_.run_for(cycles);
}
void GLU::set_vertical_blank(bool is_blank) {
vertical_blank_ = is_blank;
executor_.set_interrupt_line(is_blank);
}