1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-17 13:29:02 +00:00
CLK/Outputs/CRT/Internals/CRTOpenGL.hpp

196 lines
5.9 KiB
C++
Raw Normal View History

//
// CRTOpenGL.hpp
// Clock Signal
//
// Created by Thomas Harte on 13/02/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#ifndef CRTOpenGL_h
#define CRTOpenGL_h
#include "../CRTTypes.hpp"
#include "CRTConstants.hpp"
#include "OpenGL.hpp"
#include "TextureTarget.hpp"
#include "Shader.hpp"
#include "CRTInputBufferBuilder.hpp"
#include "Shaders/OutputShader.hpp"
#include "Shaders/IntermediateShader.hpp"
#include <mutex>
namespace Outputs {
namespace CRT {
class OpenGLOutputBuilder {
private:
// colour information
ColourSpace _colour_space;
unsigned int _colour_cycle_numerator;
unsigned int _colour_cycle_denominator;
OutputDevice _output_device;
// timing information to allow reasoning about input information
unsigned int _cycles_per_line;
unsigned int _height_of_display;
unsigned int _horizontal_scan_period;
unsigned int _vertical_scan_period;
unsigned int _vertical_period_divider;
// The user-supplied visible area
Rect _visible_area;
// Other things the caller may have provided.
char *_composite_shader;
char *_rgb_shader;
// Methods used by the OpenGL code
void prepare_rgb_output_shader();
void prepare_composite_output_shader();
std::unique_ptr<OpenGL::OutputShader> prepare_output_shader(char *fragment_shader, bool use_usampler, GLenum source_texture_unit);
void prepare_composite_input_shader();
std::unique_ptr<OpenGL::Shader> prepare_intermediate_shader(const char *input_position, const char *header, char *fragment_shader, GLenum texture_unit, bool extends);
void prepare_output_vertex_array();
void prepare_source_vertex_array();
// the run and input data buffers
std::unique_ptr<CRTInputBufferBuilder> _buffer_builder;
std::shared_ptr<std::mutex> _output_mutex;
// transient buffers indicating composite data not yet decoded
uint16_t _composite_src_output_y, _cleared_composite_output_y;
char *get_input_vertex_shader(const char *input_position, const char *header);
char *get_input_fragment_shader();
char *get_y_filter_fragment_shader();
char *get_chrominance_filter_fragment_shader();
std::unique_ptr<OpenGL::OutputShader> rgb_shader_program, composite_output_shader_program;
std::unique_ptr<OpenGL::IntermediateShader> composite_input_shader_program, composite_y_filter_shader_program, composite_chrominance_filter_shader_program;
GLuint output_array_buffer, output_vertex_array;
GLuint source_array_buffer, source_vertex_array;
GLuint textureName, shadowMaskTextureName;
GLuint defaultFramebuffer;
std::unique_ptr<OpenGL::TextureTarget> compositeTexture; // receives raw composite levels
std::unique_ptr<OpenGL::TextureTarget> filteredYTexture; // receives filtered Y in the R channel plus unfiltered I/U and Q/V in G and B
std::unique_ptr<OpenGL::TextureTarget> filteredTexture; // receives filtered YIQ or YUV
void perform_output_stage(unsigned int output_width, unsigned int output_height, OpenGL::OutputShader *const shader);
void set_timing_uniforms();
void set_colour_space_uniforms();
public:
OpenGLOutputBuilder(unsigned int buffer_depth);
~OpenGLOutputBuilder();
inline void set_colour_format(ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{
_colour_space = colour_space;
_colour_cycle_numerator = colour_cycle_numerator;
_colour_cycle_denominator = colour_cycle_denominator;
set_colour_space_uniforms();
}
inline void set_visible_area(Rect visible_area)
{
_visible_area = visible_area;
}
inline uint8_t *get_next_source_run()
{
_output_mutex->lock();
return &_source_buffer_data[_source_buffer_data_pointer % SourceVertexBufferDataSize];
}
inline void complete_source_run()
{
_source_buffer_data_pointer += 2 * SourceVertexSize;
_output_mutex->unlock();
}
inline uint8_t *get_next_output_run()
{
_output_mutex->lock();
return &_output_buffer_data[_output_buffer_data_pointer % OutputVertexBufferDataSize];
}
inline void complete_output_run(GLsizei vertices_written)
{
_output_buffer_data_pointer += vertices_written * OutputVertexSize;
_output_mutex->unlock();
}
inline OutputDevice get_output_device()
{
return _output_device;
}
inline uint16_t get_composite_output_y()
{
return _composite_src_output_y % IntermediateBufferHeight;
}
inline void increment_composite_output_y()
{
_composite_src_output_y++;
}
inline uint8_t *allocate_write_area(size_t required_length)
{
_output_mutex->lock();
_buffer_builder->allocate_write_area(required_length);
uint8_t *output = _input_texture_data ? _buffer_builder->get_write_target(_input_texture_data) : nullptr;
_output_mutex->unlock();
return output;
}
inline void reduce_previous_allocation_to(size_t actual_length)
{
_buffer_builder->reduce_previous_allocation_to(actual_length, _input_texture_data);
}
inline uint16_t get_last_write_x_posiiton()
{
return _buffer_builder->_write_x_position;
}
inline uint16_t get_last_write_y_posiiton()
{
return _buffer_builder->_write_y_position;
}
void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty);
void set_openGL_context_will_change(bool should_delete_resources);
void set_composite_sampling_function(const char *shader);
void set_rgb_sampling_function(const char *shader);
void set_output_device(OutputDevice output_device);
void set_timing(unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider);
uint8_t *_input_texture_data;
GLuint _input_texture_array;
GLsync _input_texture_sync;
GLsizeiptr _input_texture_array_size;
uint8_t *_source_buffer_data;
GLsizei _source_buffer_data_pointer;
GLsizei _drawn_source_buffer_data_pointer;
uint8_t *_output_buffer_data;
GLsizei _output_buffer_data_pointer;
GLsizei _drawn_output_buffer_data_pointer;
};
}
}
#endif /* CRTOpenGL_h */