1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/InstructionSets/x86/Implementation/PerformImplementation.hpp

384 lines
14 KiB
C++
Raw Normal View History

2023-10-05 18:37:58 +00:00
//
// PerformImplementation.hpp
// Clock Signal
//
// Created by Thomas Harte on 05/10/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef PerformImplementation_h
#define PerformImplementation_h
2023-10-05 19:49:07 +00:00
#include "../../../Numeric/Carry.hpp"
#include "../../../Numeric/RegisterSizes.hpp"
#include "../Interrupts.hpp"
2023-10-05 19:49:07 +00:00
2023-10-05 18:37:58 +00:00
namespace InstructionSet::x86 {
namespace Primitive {
2023-10-05 19:49:07 +00:00
//
// BEGIN TEMPORARY COPY AND PASTE SECTION.
//
// The following are largely excised from the M68k PerformImplementation.hpp; if there proves to be no
// reason further to specialise them, there'll be a factoring out. In some cases I've tightened the documentation.
//
/// @returns An int of type @c IntT with only the most-significant bit set.
template <typename IntT> constexpr IntT top_bit() {
static_assert(!std::numeric_limits<IntT>::is_signed);
constexpr IntT max = std::numeric_limits<IntT>::max();
return max - (max >> 1);
}
/// @returns The number of bits in @c IntT.
template <typename IntT> constexpr int bit_size() {
return sizeof(IntT) * 8;
}
/// @returns An int with the top bit indicating whether overflow occurred during the calculation of
/// • @c lhs + @c rhs (if @c is_add is true); or
/// • @c lhs - @c rhs (if @c is_add is false)
/// and the result was @c result. All other bits will be clear.
template <bool is_add, typename IntT>
IntT overflow(IntT lhs, IntT rhs, IntT result) {
const IntT output_changed = result ^ rhs;
const IntT input_differed = lhs ^ rhs;
if constexpr (is_add) {
return top_bit<IntT>() & output_changed & ~input_differed;
} else {
return top_bit<IntT>() & output_changed & input_differed;
}
}
//
// END COPY AND PASTE SECTION.
//
2023-10-06 15:10:54 +00:00
//
// Comments below on intended functioning of each operation come from the 1997 edition of the
// Intel Architecture Software Developers Manual; that year all such definitions still fitted within a
// single volume, Volume 2.
//
// Order Number 243191; e.g. https://www.ardent-tool.com/CPU/docs/Intel/IA/243191-002.pdf
//
inline void aaa(CPU::RegisterPair16 &ax, Status &status) { // P. 313
2023-10-05 18:37:58 +00:00
/*
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN
AL (AL + 6);
AH AH + 1;
AF 1;
CF 1;
ELSE
AF 0;
CF 0;
FI;
AL AL AND 0FH;
*/
/*
The AF and CF flags are set to 1 if the adjustment results in a decimal carry;
otherwise they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.
*/
if((ax.halves.low & 0x0f) > 9 || status.auxiliary_carry) {
ax.halves.low += 6;
++ax.halves.high;
status.auxiliary_carry = status.carry = 1;
} else {
status.auxiliary_carry = status.carry = 0;
}
ax.halves.low &= 0x0f;
2023-10-05 18:37:58 +00:00
}
2023-10-06 15:11:29 +00:00
inline void aad(CPU::RegisterPair16 &ax, uint8_t imm, Status &status) {
2023-10-05 18:37:58 +00:00
/*
tempAL AL;
tempAH AH;
AL (tempAL + (tempAH * imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *)
AH 0
*/
/*
The SF, ZF, and PF flags are set according to the result;
the OF, AF, and CF flags are undefined.
*/
ax.halves.low = ax.halves.low + (ax.halves.high * imm);
ax.halves.high = 0;
status.sign = ax.halves.low & 0x80;
status.parity = status.zero = ax.halves.low;
}
template <typename FlowControllerT>
inline void aam(CPU::RegisterPair16 &ax, uint8_t imm, Status &status, FlowControllerT &flow_controller) {
2023-10-05 18:52:24 +00:00
/*
tempAL AL;
AH tempAL / imm8; (* imm8 is set to 0AH for the AAD mnemonic *)
AL tempAL MOD imm8;
*/
/*
The SF, ZF, and PF flags are set according to the result.
The OF, AF, and CF flags are undefined.
*/
/*
If ... an immediate value of 0 is used, it will cause a #DE (divide error) exception.
*/
if(!imm) {
flow_controller.interrupt(Interrupt::DivideByZero);
return;
}
2023-10-05 18:52:24 +00:00
ax.halves.high = ax.halves.low / imm;
ax.halves.low = ax.halves.low % imm;
status.sign = ax.halves.low & 0x80;
status.parity = status.zero = ax.halves.low;
}
2023-10-06 15:11:29 +00:00
inline void aas(CPU::RegisterPair16 &ax, Status &status) {
2023-10-05 18:52:24 +00:00
/*
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN
AL AL 6;
AH AH 1;
AF 1;
CF 1;
ELSE
CF 0;
AF 0;
FI;
AL AL AND 0FH;
*/
/*
The AF and CF flags are set to 1 if there is a decimal borrow;
otherwise, they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.
*/
if((ax.halves.low & 0x0f) > 9 || status.auxiliary_carry) {
ax.halves.low -= 6;
--ax.halves.high;
status.auxiliary_carry = status.carry = 1;
} else {
status.auxiliary_carry = status.carry = 0;
}
ax.halves.low &= 0x0f;
}
2023-10-05 19:49:07 +00:00
template <typename IntT>
void adc(IntT &destination, IntT source, Status &status) {
/*
DEST DEST + SRC + CF;
*/
/*
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
*/
const IntT result = destination + source + status.carry_bit<IntT>();
status.carry = Numeric::carried_out<bit_size<IntT>() - 1>(destination, source, result);
status.auxiliary_carry = Numeric::carried_in<4>(destination, source, result);
2023-10-08 17:39:46 +00:00
status.sign = result & top_bit<IntT>();
status.zero = status.parity = result;
2023-10-05 19:49:07 +00:00
status.overflow = overflow<true, IntT>(destination, source, result);
destination = result;
}
template <typename IntT>
void add(IntT &destination, IntT source, Status &status) {
/*
DEST DEST + SRC;
*/
/*
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
*/
const IntT result = destination + source;
status.carry = Numeric::carried_out<bit_size<IntT>() - 1>(destination, source, result);
status.auxiliary_carry = Numeric::carried_in<4>(destination, source, result);
2023-10-08 17:39:46 +00:00
status.sign = result & top_bit<IntT>();
status.zero = status.parity = result;
2023-10-05 19:49:07 +00:00
status.overflow = overflow<true, IntT>(destination, source, result);
destination = result;
}
2023-10-05 18:37:58 +00:00
}
2023-10-08 17:34:28 +00:00
template <Model model, DataSize data_size, typename InstructionT, typename RegistersT, typename MemoryT>
typename DataSizeType<data_size>::type *resolve(InstructionT &instruction, Source source, DataPointer pointer, RegistersT &registers, MemoryT &memory) {
2023-10-08 17:34:28 +00:00
// Rules:
//
// * if this is a memory access, set target_address and break;
// * otherwise return the appropriate value.
uint32_t address;
switch(source) {
2023-10-08 17:34:28 +00:00
case Source::eAX:
// Slightly contorted if chain here and below:
//
// (i) does the `constexpr` version of a `switch`; and
// (i) ensures .eax() etc aren't called on @c registers for 16-bit processors, so they need not implement 32-bit storage.
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.eax(); }
else if constexpr (data_size == DataSize::Word) { return &registers.ax(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.al(); }
else { return nullptr; }
case Source::eCX:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.ecx(); }
else if constexpr (data_size == DataSize::Word) { return &registers.cx(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.cl(); }
else { return nullptr; }
case Source::eDX:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.edx(); }
else if constexpr (data_size == DataSize::Word) { return &registers.dx(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.dl(); }
else if constexpr (data_size == DataSize::DWord) { return nullptr; }
case Source::eBX:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.ebx(); }
else if constexpr (data_size == DataSize::Word) { return &registers.bx(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.bl(); }
else if constexpr (data_size == DataSize::DWord) { return nullptr; }
case Source::eSPorAH:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.esp(); }
else if constexpr (data_size == DataSize::Word) { return &registers.sp(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.ah(); }
else { return nullptr; }
case Source::eBPorCH:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.ebp(); }
else if constexpr (data_size == DataSize::Word) { return &registers.bp(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.ch(); }
else { return nullptr; }
case Source::eSIorDH:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.esi(); }
else if constexpr (data_size == DataSize::Word) { return &registers.si(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.dh(); }
else { return nullptr; }
case Source::eDIorBH:
if constexpr (is_32bit(model) && data_size == DataSize::DWord) { return &registers.edi(); }
else if constexpr (data_size == DataSize::Word) { return &registers.di(); }
else if constexpr (data_size == DataSize::Byte) { return &registers.bh(); }
else { return nullptr; }
case Source::ES: if constexpr (data_size == DataSize::Word) return &registers.es(); else return nullptr;
case Source::CS: if constexpr (data_size == DataSize::Word) return &registers.cs(); else return nullptr;
case Source::SS: if constexpr (data_size == DataSize::Word) return &registers.ss(); else return nullptr;
case Source::DS: if constexpr (data_size == DataSize::Word) return &registers.ds(); else return nullptr;
// 16-bit models don't have FS and GS.
case Source::FS: if constexpr (is_32bit(model) && data_size == DataSize::Word) return &registers.fs(); else return nullptr;
case Source::GS: if constexpr (is_32bit(model) && data_size == DataSize::Word) return &registers.gs(); else return nullptr;
case Source::Immediate: // TODO (here the use of a pointer falls down?)
case Source::None: return nullptr;
case Source::Indirect: // TODO: non-word indexes and bases.
address = *resolve<model, DataSize::Word>(instruction, pointer.index(), pointer, registers, memory);
if constexpr (is_32bit(model)) {
address <<= pointer.scale();
}
address += instruction.offset() + *resolve<model, DataSize::Word>(instruction, pointer.base(), pointer, registers, memory);
break;
2023-10-08 17:34:28 +00:00
case Source::IndirectNoBase: // TODO: non-word indexes and bases.
address = *resolve<model, DataSize::Word>(instruction, pointer.index(), pointer, registers, memory);
if constexpr (is_32bit(model)) {
address <<= pointer.scale();
}
address += instruction.offset();
break;
2023-10-08 17:34:28 +00:00
case Source::DirectAddress:
address = instruction.offset();
break;
}
// If execution has reached here then a memory fetch is required.
// Do it and exit.
const Source segment = pointer.segment(instruction.segment_override());
2023-10-08 17:34:28 +00:00
using IntT = typename DataSizeType<data_size>::type;
return &memory.template access<IntT>(segment, address);
};
2023-10-05 18:37:58 +00:00
template <
Model model,
DataSize data_size,
typename InstructionT,
typename FlowControllerT,
typename RegistersT,
typename MemoryT,
typename IOT
2023-10-05 18:37:58 +00:00
> void perform(
const InstructionT &instruction,
2023-10-05 18:37:58 +00:00
Status &status,
[[maybe_unused]] FlowControllerT &flow_controller,
RegistersT &registers,
[[maybe_unused]] MemoryT &memory,
[[maybe_unused]] IOT &io
2023-10-05 18:37:58 +00:00
) {
using IntT = typename DataSizeType<data_size>::type;
using AddressT = typename AddressT<is_32bit(model)>::type;
// Establish source() and destination() shorthand to fetch data if necessary.
auto source = [&]() -> IntT& { return *resolve<model, data_size>(instruction, instruction.source().template source<false>(), instruction.source(), registers, memory); };
auto destination = [&]() -> IntT& { return *resolve<model, data_size>(instruction, instruction.destination().template source<false>(), instruction.source(), registers, memory); };
// Guide to the below:
//
// * use hard-coded register names where appropriate;
// * return directly if there is definitely no possible write back to RAM;
// * otherwise use the source() and destination() lambdas, and break in order to allow a writeback if necessary.
switch(instruction.operation) {
default: return;
//assert(false);
case Operation::AAA: Primitive::aaa(registers.axp(), status); return;
case Operation::AAD: Primitive::aad(registers.axp(), instruction.operand(), status); return;
case Operation::AAM: Primitive::aam(registers.axp(), instruction.operand(), status, flow_controller); return;
case Operation::AAS: Primitive::aas(registers.axp(), status); return;
case Operation::ADC: Primitive::adc(destination(), source(), status); break;
case Operation::ADD: Primitive::add(destination(), source(), status); break;
2023-10-05 18:37:58 +00:00
}
// Write to memory if required to complete this operation.
// if(original_data != fetched_data) {
// TODO.
// }
2023-10-05 18:37:58 +00:00
}
template <
2023-10-05 18:37:58 +00:00
Model model,
typename InstructionT,
typename FlowControllerT,
typename RegistersT,
typename MemoryT,
typename IOT
2023-10-05 18:37:58 +00:00
> void perform(
const InstructionT &instruction,
Status &status,
FlowControllerT &flow_controller,
RegistersT &registers,
MemoryT &memory,
IOT &io
) {
// Dispatch to a function just like this that is specialised on data size.
// Fetching will occur in that specialised function, per the overlapping
// meaning of register names.
switch(instruction.operation_size()) {
case DataSize::Byte:
perform<model, DataSize::Byte>(instruction, status, flow_controller, registers, memory, io);
break;
case DataSize::Word:
perform<model, DataSize::Word>(instruction, status, flow_controller, registers, memory, io);
break;
case DataSize::DWord:
perform<model, DataSize::DWord>(instruction, status, flow_controller, registers, memory, io);
break;
case DataSize::None:
perform<model, DataSize::None>(instruction, status, flow_controller, registers, memory, io);
break;
2023-10-05 18:37:58 +00:00
}
}
2023-10-05 18:37:58 +00:00
}
#endif /* PerformImplementation_h */