2019-06-08 18:47:11 -04:00
|
|
|
//
|
|
|
|
// 8530.cpp
|
|
|
|
// Clock Signal
|
|
|
|
//
|
|
|
|
// Created by Thomas Harte on 07/06/2019.
|
|
|
|
// Copyright © 2019 Thomas Harte. All rights reserved.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "z8530.hpp"
|
|
|
|
|
2019-06-12 17:51:50 -04:00
|
|
|
#include "../../Outputs/Log.hpp"
|
|
|
|
|
2019-06-08 18:47:11 -04:00
|
|
|
using namespace Zilog::SCC;
|
|
|
|
|
2024-01-19 10:57:30 -05:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
Log::Logger<Log::Source::SCC> log;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2019-06-08 18:47:11 -04:00
|
|
|
void z8530::reset() {
|
2019-06-12 17:51:50 -04:00
|
|
|
// TODO.
|
|
|
|
}
|
|
|
|
|
2020-05-09 21:22:51 -04:00
|
|
|
bool z8530::get_interrupt_line() const {
|
2019-06-12 22:19:25 -04:00
|
|
|
return
|
|
|
|
(master_interrupt_control_ & 0x8) &&
|
|
|
|
(
|
|
|
|
channels_[0].get_interrupt_line() ||
|
|
|
|
channels_[1].get_interrupt_line()
|
|
|
|
);
|
2019-06-08 18:47:11 -04:00
|
|
|
}
|
|
|
|
|
2019-09-29 22:08:16 -04:00
|
|
|
/*
|
|
|
|
Per the standard defined in the header file, this implementation follows
|
|
|
|
an addressing convention of:
|
|
|
|
|
|
|
|
A0 = A/B (i.e. channel select)
|
|
|
|
A1 = C/D (i.e. control or data)
|
|
|
|
*/
|
|
|
|
|
2024-11-29 22:43:54 -05:00
|
|
|
std::uint8_t z8530::read(const int address) {
|
2019-06-12 22:19:25 -04:00
|
|
|
if(address & 2) {
|
2019-09-29 22:08:16 -04:00
|
|
|
// Read data register for channel.
|
|
|
|
return channels_[address & 1].read(true, pointer_);
|
2019-06-12 22:19:25 -04:00
|
|
|
} else {
|
|
|
|
// Read control register for channel.
|
|
|
|
uint8_t result = 0;
|
|
|
|
|
|
|
|
switch(pointer_) {
|
|
|
|
default:
|
2019-09-29 22:08:16 -04:00
|
|
|
result = channels_[address & 1].read(false, pointer_);
|
2019-06-12 22:19:25 -04:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 2: // Handled non-symmetrically between channels.
|
|
|
|
if(address & 1) {
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("Unimplemented: register 2 status bits");
|
2019-06-12 22:19:25 -04:00
|
|
|
} else {
|
|
|
|
result = interrupt_vector_;
|
|
|
|
|
|
|
|
// Modify the vector if permitted.
|
|
|
|
// if(master_interrupt_control_ & 1) {
|
|
|
|
for(int port = 0; port < 2; ++port) {
|
|
|
|
// TODO: the logic below assumes that DCD is the only implemented interrupt. Fix.
|
|
|
|
if(channels_[port].get_interrupt_line()) {
|
|
|
|
const uint8_t shift = 1 + 3*((master_interrupt_control_ & 0x10) >> 4);
|
|
|
|
const uint8_t mask = uint8_t(~(7 << shift));
|
|
|
|
result = uint8_t(
|
|
|
|
(result & mask) |
|
|
|
|
((1 | ((port == 1) ? 4 : 0)) << shift)
|
|
|
|
);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// }
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-09-29 22:08:16 -04:00
|
|
|
// Cf. the two-step control register selection process in ::write. Since this
|
|
|
|
// definitely wasn't a *write* to register 0, it follows that the next selected
|
|
|
|
// control register will be 0.
|
2019-06-12 22:19:25 -04:00
|
|
|
pointer_ = 0;
|
2019-09-29 22:08:16 -04:00
|
|
|
|
2019-07-23 23:13:03 -04:00
|
|
|
update_delegate();
|
2019-06-12 22:19:25 -04:00
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0x00;
|
2019-06-08 18:47:11 -04:00
|
|
|
}
|
|
|
|
|
2024-11-29 22:43:54 -05:00
|
|
|
void z8530::write(const int address, const std::uint8_t value) {
|
2019-06-12 17:51:50 -04:00
|
|
|
if(address & 2) {
|
2019-09-29 22:08:16 -04:00
|
|
|
// Write data register for channel. This is completely independent
|
|
|
|
// of whatever is going on over in the control realm.
|
|
|
|
channels_[address & 1].write(true, pointer_, value);
|
2019-06-12 17:51:50 -04:00
|
|
|
} else {
|
2019-09-29 22:08:16 -04:00
|
|
|
// Write control register for channel; there's a two-step sequence
|
|
|
|
// here for the programmer. Initially the selected register
|
|
|
|
// (i.e. `pointer_`) is zero. That register includes a field to
|
|
|
|
// set the next selected register. After any other register has
|
|
|
|
// been written to, register 0 is selected again.
|
|
|
|
|
|
|
|
// Most registers are per channel, but a couple are shared;
|
|
|
|
// sever them here, send the rest to the appropriate chnanel.
|
2019-06-12 17:51:50 -04:00
|
|
|
switch(pointer_) {
|
|
|
|
default:
|
2019-09-29 22:08:16 -04:00
|
|
|
channels_[address & 1].write(false, pointer_, value);
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
|
2019-09-29 22:08:16 -04:00
|
|
|
case 2: // Interrupt vector register; used only by Channel B.
|
|
|
|
// So there's only one of these.
|
2019-06-12 17:51:50 -04:00
|
|
|
interrupt_vector_ = value;
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Interrupt vector set to %d", value);
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
|
2019-09-29 22:08:16 -04:00
|
|
|
case 9: // Master interrupt and reset register; there is also only one of these.
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Master interrupt and reset register: %02x", value);
|
2019-06-12 22:19:25 -04:00
|
|
|
master_interrupt_control_ = value;
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The pointer number resets to 0 after every access, but if it is zero
|
|
|
|
// then crib at least the next set of pointer bits (which, similarly, are shared
|
|
|
|
// between the two channels).
|
2019-06-08 18:47:11 -04:00
|
|
|
if(pointer_) {
|
|
|
|
pointer_ = 0;
|
|
|
|
} else {
|
2019-06-12 17:51:50 -04:00
|
|
|
// The lowest three bits are the lowest three bits of the pointer.
|
2019-06-08 18:47:11 -04:00
|
|
|
pointer_ = value & 7;
|
2019-06-12 17:51:50 -04:00
|
|
|
|
|
|
|
// If the command part of the byte is a 'point high', also set the
|
2019-09-29 22:08:16 -04:00
|
|
|
// top bit of the pointer. Channels themselves therefore need not
|
|
|
|
// (/should not) respond to the point high command.
|
2019-06-12 17:51:50 -04:00
|
|
|
if(((value >> 3)&7) == 1) {
|
|
|
|
pointer_ |= 8;
|
|
|
|
}
|
2019-06-08 18:47:11 -04:00
|
|
|
}
|
|
|
|
}
|
2019-07-23 23:13:03 -04:00
|
|
|
update_delegate();
|
2019-06-08 18:47:11 -04:00
|
|
|
}
|
|
|
|
|
2024-11-29 22:43:54 -05:00
|
|
|
void z8530::set_dcd(const int port, const bool level) {
|
2019-06-12 22:19:25 -04:00
|
|
|
channels_[port].set_dcd(level);
|
2019-07-23 23:13:03 -04:00
|
|
|
update_delegate();
|
2019-06-12 22:19:25 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
// MARK: - Channel implementations
|
|
|
|
|
2024-11-29 22:43:54 -05:00
|
|
|
uint8_t z8530::Channel::read(const bool data, const uint8_t pointer) {
|
2019-06-08 18:47:11 -04:00
|
|
|
// If this is a data read, just return it.
|
2019-06-12 17:51:50 -04:00
|
|
|
if(data) {
|
|
|
|
return data_;
|
|
|
|
} else {
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Control read from register %d", pointer);
|
2019-06-12 22:19:25 -04:00
|
|
|
// Otherwise, this is a control read...
|
|
|
|
switch(pointer) {
|
|
|
|
default:
|
|
|
|
return 0x00;
|
|
|
|
|
2019-12-18 22:57:12 -05:00
|
|
|
case 0x0: // Read Register 0; see p.37 (PDF p.45).
|
|
|
|
// b0: Rx character available.
|
|
|
|
// b1: zero count.
|
|
|
|
// b2: Tx buffer empty.
|
|
|
|
// b3: DCD.
|
|
|
|
// b4: sync/hunt.
|
|
|
|
// b5: CTS.
|
|
|
|
// b6: Tx underrun/EOM.
|
|
|
|
// b7: break/abort.
|
2019-06-12 22:19:25 -04:00
|
|
|
return dcd_ ? 0x8 : 0x0;
|
|
|
|
|
2019-12-18 22:57:12 -05:00
|
|
|
case 0x1: // Read Register 1; see p.37 (PDF p.45).
|
|
|
|
// b0: all sent.
|
|
|
|
// b1: residue code 0.
|
|
|
|
// b2: residue code 1.
|
|
|
|
// b3: residue code 2.
|
|
|
|
// b4: parity error.
|
|
|
|
// b5: Rx overrun error.
|
|
|
|
// b6: CRC/framing error.
|
|
|
|
// b7: end of frame (SDLC).
|
|
|
|
return 0x01;
|
|
|
|
|
|
|
|
case 0x2: // Read Register 2; see p.37 (PDF p.45).
|
|
|
|
// Interrupt vector — modified by status information in B channel.
|
|
|
|
return 0x00;
|
|
|
|
|
|
|
|
case 0x3: // Read Register 3; see p.37 (PDF p.45).
|
|
|
|
// B channel: all bits are 0.
|
|
|
|
// A channel:
|
|
|
|
// b0: Channel B ext/status IP.
|
|
|
|
// b1: Channel B Tx IP.
|
|
|
|
// b2: Channel B Rx IP.
|
|
|
|
// b3: Channel A ext/status IP.
|
|
|
|
// b4: Channel A Tx IP.
|
|
|
|
// b5: Channel A Rx IP.
|
|
|
|
// b6, b7: 0.
|
|
|
|
return 0x00;
|
|
|
|
|
|
|
|
case 0xa: // Read Register 10; see p.37 (PDF p.45).
|
|
|
|
// b0: 0
|
|
|
|
// b1: On loop.
|
|
|
|
// b2: 0
|
|
|
|
// b3: 0
|
|
|
|
// b4: Loop sending.
|
|
|
|
// b5: 0
|
|
|
|
// b6: Two clocks missing.
|
|
|
|
// b7: One clock missing.
|
|
|
|
return 0x00;
|
|
|
|
|
|
|
|
case 0xc: // Read Register 12; see p.37 (PDF p.45).
|
|
|
|
// Lower byte of time constant.
|
|
|
|
return 0x00;
|
|
|
|
|
|
|
|
case 0xd: // Read Register 13; see p.38 (PDF p.46).
|
|
|
|
// Upper byte of time constant.
|
|
|
|
return 0x00;
|
|
|
|
|
|
|
|
case 0xf: // Read Register 15; see p.38 (PDF p.46).
|
|
|
|
// External interrupt status:
|
|
|
|
// b0: 0
|
|
|
|
// b1: Zero count.
|
|
|
|
// b2: 0
|
|
|
|
// b3: DCD.
|
|
|
|
// b4: Sync/hunt.
|
|
|
|
// b5: CTS.
|
|
|
|
// b6: Tx underrun/EOM.
|
|
|
|
// b7: Break/abort.
|
2019-06-12 22:19:25 -04:00
|
|
|
return external_interrupt_status_;
|
|
|
|
}
|
2019-06-12 17:51:50 -04:00
|
|
|
}
|
2019-06-08 18:47:11 -04:00
|
|
|
|
|
|
|
return 0x00;
|
|
|
|
}
|
|
|
|
|
2024-11-29 22:43:54 -05:00
|
|
|
void z8530::Channel::write(const bool data, const uint8_t pointer, const uint8_t value) {
|
2019-06-08 18:47:11 -04:00
|
|
|
if(data) {
|
|
|
|
data_ = value;
|
|
|
|
return;
|
2019-06-12 17:51:50 -04:00
|
|
|
} else {
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Control write: %02x to register %d", value, pointer);
|
2019-06-12 17:51:50 -04:00
|
|
|
switch(pointer) {
|
|
|
|
default:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Unrecognised control write: %02x to register %d", value, pointer);
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x0: // Write register 0 — CRC reset and other functions.
|
|
|
|
// Decode CRC reset instructions.
|
|
|
|
switch(value >> 6) {
|
|
|
|
default: /* Do nothing. */ break;
|
|
|
|
case 1:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: reset Rx CRC checker.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 2:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: reset Tx CRC checker.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 3:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: reset Tx underrun/EOM latch.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Decode command code.
|
|
|
|
switch((value >> 3)&7) {
|
|
|
|
default: /* Do nothing. */ break;
|
|
|
|
case 2:
|
2024-01-19 14:16:13 -05:00
|
|
|
// log.info().append("reset ext/status interrupts.");
|
2019-06-12 22:19:25 -04:00
|
|
|
external_status_interrupt_ = false;
|
|
|
|
external_interrupt_status_ = 0;
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 3:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: send abort (SDLC).");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 4:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: enable interrupt on next Rx character.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 5:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: reset Tx interrupt pending.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 6:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: reset error.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
case 7:
|
2024-01-19 10:57:30 -05:00
|
|
|
log.error().append("TODO: reset highest IUS.");
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x1: // Write register 1 — Transmit/Receive Interrupt and Data Transfer Mode Definition.
|
2019-06-12 22:19:25 -04:00
|
|
|
interrupt_mask_ = value;
|
2019-10-02 19:18:09 -04:00
|
|
|
|
|
|
|
/*
|
|
|
|
b7 = 0 => Wait/Request output is inactive; 1 => output is informative.
|
|
|
|
b6 = Wait/request output is for...
|
|
|
|
0 => wait: floating when inactive, low if CPU is attempting to transfer data the SCC isn't yet ready for.
|
|
|
|
1 => request: high if inactive, low if SCC is ready to transfer data.
|
|
|
|
b5 = 1 => wait/request is relative to read buffer; 0 => relative to write buffer.
|
|
|
|
|
|
|
|
b4/b3:
|
|
|
|
00 = disable receive interrupt
|
|
|
|
01 = interrupt on first character or special condition
|
|
|
|
10 = interrupt on all characters and special conditions
|
|
|
|
11 = interrupt only upon special conditions.
|
|
|
|
|
|
|
|
b2 = 1 => parity error is a special condition; 0 => it isn't.
|
|
|
|
b1 = 1 => transmit buffer empty interrupt is enabled; 0 => it isn't.
|
|
|
|
b0 = 1 => external interrupt is enabled; 0 => it isn't.
|
|
|
|
*/
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Interrupt mask: %02x", value);
|
2019-12-18 22:57:12 -05:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x2: // Write register 2 - interrupt vector.
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
|
2019-10-02 19:18:09 -04:00
|
|
|
case 0x3: { // Write register 3 — Receive Parameters and Control.
|
|
|
|
// Get bit count.
|
|
|
|
int receive_bit_count = 8;
|
|
|
|
switch(value >> 6) {
|
|
|
|
default: receive_bit_count = 5; break;
|
|
|
|
case 1: receive_bit_count = 7; break;
|
|
|
|
case 2: receive_bit_count = 6; break;
|
|
|
|
case 3: receive_bit_count = 8; break;
|
|
|
|
}
|
2024-01-19 10:57:30 -05:00
|
|
|
log.info().append("Receive bit count: %d", receive_bit_count);
|
2020-07-24 21:59:27 -04:00
|
|
|
|
2019-10-02 19:18:09 -04:00
|
|
|
/*
|
|
|
|
b7,b6:
|
|
|
|
00 = 5 receive bits per character
|
|
|
|
01 = 7 bits
|
|
|
|
10 = 6 bits
|
|
|
|
11 = 8 bits
|
|
|
|
|
|
|
|
b5 = 1 => DCD and CTS outputs are set automatically; 0 => they're inputs to read register 0.
|
|
|
|
(DCD is ignored in local loopback; CTS is ignored in both auto echo and local loopback).
|
|
|
|
b4: enter hunt mode (if set to 1, presumably?)
|
|
|
|
b3 = 1 => enable receiver CRC generation; 0 => don't.
|
2019-12-18 22:57:12 -05:00
|
|
|
b2: address search mode (SDLC)
|
|
|
|
b1: sync character load inhibit.
|
|
|
|
b0: Rx enable.
|
2019-10-02 19:18:09 -04:00
|
|
|
*/
|
|
|
|
} break;
|
|
|
|
|
2019-06-12 17:51:50 -04:00
|
|
|
case 0x4: // Write register 4 — Transmit/Receive Miscellaneous Parameters and Modes.
|
|
|
|
// Bits 0 and 1 select parity mode.
|
|
|
|
if(!(value&1)) {
|
|
|
|
parity_ = Parity::Off;
|
|
|
|
} else {
|
|
|
|
parity_ = (value&2) ? Parity::Even : Parity::Odd;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bits 2 and 3 select stop bits.
|
|
|
|
switch((value >> 2)&3) {
|
|
|
|
default: stop_bits_ = StopBits::Synchronous; break;
|
|
|
|
case 1: stop_bits_ = StopBits::OneBit; break;
|
|
|
|
case 2: stop_bits_ = StopBits::OneAndAHalfBits; break;
|
|
|
|
case 3: stop_bits_ = StopBits::TwoBits; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bits 4 and 5 pick a sync mode.
|
|
|
|
switch((value >> 4)&3) {
|
|
|
|
default: sync_mode_ = Sync::Monosync; break;
|
|
|
|
case 1: sync_mode_ = Sync::Bisync; break;
|
|
|
|
case 2: sync_mode_ = Sync::SDLC; break;
|
|
|
|
case 3: sync_mode_ = Sync::External; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bits 6 and 7 select a clock rate multiplier, unless synchronous
|
|
|
|
// mode is enabled (and this is ignored if sync mode is external).
|
|
|
|
if(stop_bits_ == StopBits::Synchronous) {
|
|
|
|
clock_rate_multiplier_ = 1;
|
|
|
|
} else {
|
|
|
|
switch((value >> 6)&3) {
|
|
|
|
default: clock_rate_multiplier_ = 1; break;
|
|
|
|
case 1: clock_rate_multiplier_ = 16; break;
|
|
|
|
case 2: clock_rate_multiplier_ = 32; break;
|
|
|
|
case 3: clock_rate_multiplier_ = 64; break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
2019-12-18 22:57:12 -05:00
|
|
|
case 0x5:
|
|
|
|
// b7: DTR
|
|
|
|
// b6/b5:
|
|
|
|
// 00 = Tx 5 bits (or less) per character
|
|
|
|
// 01 = Tx 7 bits per character
|
|
|
|
// 10 = Tx 6 bits per character
|
|
|
|
// 11 = Tx 8 bits per character
|
|
|
|
// b4: send break.
|
|
|
|
// b3: Tx enable.
|
|
|
|
// b2: SDLC (if 0) / CRC-16 (if 1)
|
|
|
|
// b1: RTS
|
|
|
|
// b0: Tx CRC enable.
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x6:
|
|
|
|
break;
|
|
|
|
|
2019-06-12 17:51:50 -04:00
|
|
|
case 0xf: // Write register 15 — External/Status Interrupt Control.
|
2019-06-12 22:19:25 -04:00
|
|
|
external_interrupt_mask_ = value;
|
2019-06-12 17:51:50 -04:00
|
|
|
break;
|
|
|
|
}
|
2019-06-08 18:47:11 -04:00
|
|
|
}
|
|
|
|
}
|
2019-06-12 17:51:50 -04:00
|
|
|
|
2024-11-29 22:43:54 -05:00
|
|
|
void z8530::Channel::set_dcd(const bool level) {
|
2019-06-12 22:19:25 -04:00
|
|
|
if(dcd_ == level) return;
|
|
|
|
dcd_ = level;
|
|
|
|
|
|
|
|
if(external_interrupt_mask_ & 0x8) {
|
|
|
|
external_status_interrupt_ = true;
|
|
|
|
external_interrupt_status_ |= 0x8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-05-09 21:22:51 -04:00
|
|
|
bool z8530::Channel::get_interrupt_line() const {
|
2019-06-12 22:19:25 -04:00
|
|
|
return
|
|
|
|
(interrupt_mask_ & 1) && external_status_interrupt_;
|
|
|
|
// TODO: other potential causes of an interrupt.
|
2019-06-12 17:51:50 -04:00
|
|
|
}
|
2019-07-23 23:13:03 -04:00
|
|
|
|
2019-09-29 22:08:16 -04:00
|
|
|
/*!
|
|
|
|
Evaluates the new level of the interrupt line and notifies the delegate if
|
|
|
|
both: (i) there is one; and (ii) the interrupt line has changed since last
|
|
|
|
the delegate was notified.
|
|
|
|
*/
|
2019-07-23 23:13:03 -04:00
|
|
|
void z8530::update_delegate() {
|
|
|
|
const bool interrupt_line = get_interrupt_line();
|
|
|
|
if(interrupt_line != previous_interrupt_line_) {
|
|
|
|
previous_interrupt_line_ = interrupt_line;
|
|
|
|
if(delegate_) delegate_->did_change_interrupt_status(this, interrupt_line);
|
|
|
|
}
|
|
|
|
}
|