llvm-6502/lib/VMCore/Constants.cpp

2770 lines
102 KiB
C++
Raw Normal View History

//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "ConstantFold.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
void Constant::anchor() { }
bool Constant::isNegativeZeroValue() const {
// Floating point values have an explicit -0.0 value.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero() && CFP->isNegative();
// Otherwise, just use +0.0.
return isNullValue();
}
bool Constant::isNullValue() const {
// 0 is null.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isZero();
// +0.0 is null.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero() && !CFP->isNegative();
// constant zero is zero for aggregates and cpnull is null for pointers.
return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
}
bool Constant::isAllOnesValue() const {
// Check for -1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isMinusOne();
// Check for FP which are bitcasted from -1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
// Check for constant vectors which are splats of -1 values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isAllOnesValue();
// Check for constant vectors which are splats of -1 values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isAllOnesValue();
return false;
}
// Constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(Type *Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::HalfTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEhalf));
case Type::FloatTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEsingle));
case Type::DoubleTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEdouble));
case Type::X86_FP80TyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::x87DoubleExtended));
case Type::FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEquad));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat(APInt::getNullValue(128)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
return ConstantAggregateZero::get(Ty);
default:
// Function, Label, or Opaque type?
llvm_unreachable("Cannot create a null constant of that type!");
}
}
Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
Type *ScalarTy = Ty->getScalarType();
// Create the base integer constant.
Constant *C = ConstantInt::get(Ty->getContext(), V);
// Convert an integer to a pointer, if necessary.
if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
C = ConstantExpr::getIntToPtr(C, PTy);
// Broadcast a scalar to a vector, if necessary.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
C = ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *Constant::getAllOnesValue(Type *Ty) {
if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(Ty->getContext(),
APInt::getAllOnesValue(ITy->getBitWidth()));
if (Ty->isFloatingPointTy()) {
APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
!Ty->isPPC_FP128Ty());
return ConstantFP::get(Ty->getContext(), FL);
}
VectorType *VTy = cast<VectorType>(Ty);
return ConstantVector::getSplat(VTy->getNumElements(),
getAllOnesValue(VTy->getElementType()));
}
/// getAggregateElement - For aggregates (struct/array/vector) return the
/// constant that corresponds to the specified element if possible, or null if
/// not. This can return null if the element index is a ConstantExpr, or if
/// 'this' is a constant expr.
Constant *Constant::getAggregateElement(unsigned Elt) const {
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
return CAZ->getElementValue(Elt);
if (const UndefValue *UV = dyn_cast<UndefValue>(this))
return UV->getElementValue(Elt);
if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
return 0;
}
Constant *Constant::getAggregateElement(Constant *Elt) const {
assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
return getAggregateElement(CI->getZExtValue());
return 0;
}
void Constant::destroyConstantImpl() {
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
dbgs() << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
}
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
cast<Constant>(V)->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || use_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
/// canTrap - Return true if evaluation of this constant could trap. This is
/// true for things like constant expressions that could divide by zero.
bool Constant::canTrap() const {
assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
if (!CE) return false;
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (CE->getOperand(i)->canTrap())
return true;
// Otherwise, only specific operations can trap.
switch (CE->getOpcode()) {
default:
return false;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
// Div and rem can trap if the RHS is not known to be non-zero.
if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
return true;
return false;
}
}
/// isThreadDependent - Return true if the value can vary between threads.
bool Constant::isThreadDependent() const {
SmallPtrSet<const Constant*, 64> Visited;
SmallVector<const Constant*, 64> WorkList;
WorkList.push_back(this);
Visited.insert(this);
while (!WorkList.empty()) {
const Constant *C = WorkList.pop_back_val();
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (GV->isThreadLocal())
return true;
}
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
const Constant *D = dyn_cast<Constant>(C->getOperand(I));
if (!D)
continue;
if (Visited.insert(D))
WorkList.push_back(D);
}
}
return false;
}
/// isConstantUsed - Return true if the constant has users other than constant
/// exprs and other dangling things.
bool Constant::isConstantUsed() const {
for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
const Constant *UC = dyn_cast<Constant>(*UI);
if (UC == 0 || isa<GlobalValue>(UC))
return true;
if (UC->isConstantUsed())
return true;
}
return false;
}
/// getRelocationInfo - This method classifies the entry according to
/// whether or not it may generate a relocation entry. This must be
/// conservative, so if it might codegen to a relocatable entry, it should say
/// so. The return values are:
///
/// NoRelocation: This constant pool entry is guaranteed to never have a
/// relocation applied to it (because it holds a simple constant like
/// '4').
/// LocalRelocation: This entry has relocations, but the entries are
/// guaranteed to be resolvable by the static linker, so the dynamic
/// linker will never see them.
/// GlobalRelocations: This entry may have arbitrary relocations.
///
/// FIXME: This really should not be in VMCore.
Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return LocalRelocation; // Local to this file/library.
return GlobalRelocations; // Global reference.
}
if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
return BA->getFunction()->getRelocationInfo();
// While raw uses of blockaddress need to be relocated, differences between
// two of them don't when they are for labels in the same function. This is a
// common idiom when creating a table for the indirect goto extension, so we
// handle it efficiently here.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
if (CE->getOpcode() == Instruction::Sub) {
ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
if (LHS && RHS &&
LHS->getOpcode() == Instruction::PtrToInt &&
RHS->getOpcode() == Instruction::PtrToInt &&
isa<BlockAddress>(LHS->getOperand(0)) &&
isa<BlockAddress>(RHS->getOperand(0)) &&
cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
cast<BlockAddress>(RHS->getOperand(0))->getFunction())
return NoRelocation;
}
PossibleRelocationsTy Result = NoRelocation;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result = std::max(Result,
cast<Constant>(getOperand(i))->getRelocationInfo());
return Result;
}
/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
/// it. This involves recursively eliminating any dead users of the
/// constantexpr.
static bool removeDeadUsersOfConstant(const Constant *C) {
if (isa<GlobalValue>(C)) return false; // Cannot remove this
while (!C->use_empty()) {
const Constant *User = dyn_cast<Constant>(C->use_back());
if (!User) return false; // Non-constant usage;
if (!removeDeadUsersOfConstant(User))
return false; // Constant wasn't dead
}
const_cast<Constant*>(C)->destroyConstant();
return true;
}
/// removeDeadConstantUsers - If there are any dead constant users dangling
/// off of this constant, remove them. This method is useful for clients
/// that want to check to see if a global is unused, but don't want to deal
/// with potentially dead constants hanging off of the globals.
void Constant::removeDeadConstantUsers() const {
Value::const_use_iterator I = use_begin(), E = use_end();
Value::const_use_iterator LastNonDeadUser = E;
while (I != E) {
const Constant *User = dyn_cast<Constant>(*I);
if (User == 0) {
LastNonDeadUser = I;
++I;
continue;
}
if (!removeDeadUsersOfConstant(User)) {
// If the constant wasn't dead, remember that this was the last live use
// and move on to the next constant.
LastNonDeadUser = I;
++I;
continue;
}
// If the constant was dead, then the iterator is invalidated.
if (LastNonDeadUser == E) {
I = use_begin();
if (I == E) break;
} else {
I = LastNonDeadUser;
++I;
}
}
}
//===----------------------------------------------------------------------===//
// ConstantInt
//===----------------------------------------------------------------------===//
void ConstantInt::anchor() { }
ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
: Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheTrueVal)
pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
return pImpl->TheTrueVal;
}
ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheFalseVal)
pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
return pImpl->TheFalseVal;
}
Constant *ConstantInt::getTrue(Type *Ty) {
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy) {
assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
return ConstantInt::getTrue(Ty->getContext());
}
assert(VTy->getElementType()->isIntegerTy(1) &&
"True must be vector of i1 or i1.");
return ConstantVector::getSplat(VTy->getNumElements(),
ConstantInt::getTrue(Ty->getContext()));
}
Constant *ConstantInt::getFalse(Type *Ty) {
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy) {
assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
return ConstantInt::getFalse(Ty->getContext());
}
assert(VTy->getElementType()->isIntegerTy(1) &&
"False must be vector of i1 or i1.");
return ConstantVector::getSplat(VTy->getNumElements(),
ConstantInt::getFalse(Ty->getContext()));
}
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
// Get the corresponding integer type for the bit width of the value.
IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
// get an existing value or the insertion position
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
if (!Slot) Slot = new ConstantInt(ITy, V);
return Slot;
}
Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
bool isSigned) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
}
ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::get(Type *Ty, const APInt& V) {
ConstantInt *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
uint8_t radix) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
}
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
if (Ty->isHalfTy())
return &APFloat::IEEEhalf;
if (Ty->isFloatTy())
return &APFloat::IEEEsingle;
if (Ty->isDoubleTy())
return &APFloat::IEEEdouble;
if (Ty->isX86_FP80Ty())
return &APFloat::x87DoubleExtended;
else if (Ty->isFP128Ty())
return &APFloat::IEEEquad;
assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
return &APFloat::PPCDoubleDouble;
}
void ConstantFP::anchor() { }
/// get() - This returns a constant fp for the specified value in the
/// specified type. This should only be used for simple constant values like
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
Constant *ConstantFP::get(Type *Ty, double V) {
LLVMContext &Context = Ty->getContext();
APFloat FV(V);
bool ignored;
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
APFloat::rmNearestTiesToEven, &ignored);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *ConstantFP::get(Type *Ty, StringRef Str) {
LLVMContext &Context = Ty->getContext();
APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
LLVMContext &Context = Ty->getContext();
APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
apf.changeSign();
return get(Context, apf);
}
Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
Type *ScalarTy = Ty->getScalarType();
if (ScalarTy->isFloatingPointTy()) {
Constant *C = getNegativeZero(ScalarTy);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
return Constant::getNullValue(Ty);
}
// ConstantFP accessors.
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
LLVMContextImpl* pImpl = Context.pImpl;
ConstantFP *&Slot = pImpl->FPConstants[Key];
if (!Slot) {
Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEhalf)
Ty = Type::getHalfTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEsingle)
Ty = Type::getFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEdouble)
Ty = Type::getDoubleTy(Context);
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
Ty = Type::getX86_FP80Ty(Context);
else if (&V.getSemantics() == &APFloat::IEEEquad)
Ty = Type::getFP128Ty(Context);
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
"Unknown FP format");
Ty = Type::getPPC_FP128Ty(Context);
}
Slot = new ConstantFP(Ty, V);
}
return Slot;
}
ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
return ConstantFP::get(Ty->getContext(),
APFloat::getInf(Semantics, Negative));
}
ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
: Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
"FP type Mismatch");
}
bool ConstantFP::isExactlyValue(const APFloat &V) const {
return Val.bitwiseIsEqual(V);
}
//===----------------------------------------------------------------------===//
// ConstantAggregateZero Implementation
//===----------------------------------------------------------------------===//
/// getSequentialElement - If this CAZ has array or vector type, return a zero
/// with the right element type.
Constant *ConstantAggregateZero::getSequentialElement() const {
return Constant::getNullValue(getType()->getSequentialElementType());
}
/// getStructElement - If this CAZ has struct type, return a zero with the
/// right element type for the specified element.
Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
return Constant::getNullValue(getType()->getStructElementType(Elt));
}
/// getElementValue - Return a zero of the right value for the specified GEP
/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
/// getElementValue - Return a zero of the right value for the specified GEP
/// index.
Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
//===----------------------------------------------------------------------===//
// UndefValue Implementation
//===----------------------------------------------------------------------===//
/// getSequentialElement - If this undef has array or vector type, return an
/// undef with the right element type.
UndefValue *UndefValue::getSequentialElement() const {
return UndefValue::get(getType()->getSequentialElementType());
}
/// getStructElement - If this undef has struct type, return a zero with the
/// right element type for the specified element.
UndefValue *UndefValue::getStructElement(unsigned Elt) const {
return UndefValue::get(getType()->getStructElementType(Elt));
}
/// getElementValue - Return an undef of the right value for the specified GEP
/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
UndefValue *UndefValue::getElementValue(Constant *C) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
/// getElementValue - Return an undef of the right value for the specified GEP
/// index.
UndefValue *UndefValue::getElementValue(unsigned Idx) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
template <typename ItTy, typename EltTy>
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
for (; Start != End; ++Start)
if (*Start != Elt)
return false;
return true;
}
ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
: Constant(T, ConstantArrayVal,
OperandTraits<ConstantArray>::op_end(this) - V.size(),
V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant array");
for (unsigned i = 0, e = V.size(); i != e; ++i)
assert(V[i]->getType() == T->getElementType() &&
"Initializer for array element doesn't match array element type!");
std::copy(V.begin(), V.end(), op_begin());
}
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
// Empty arrays are canonicalized to ConstantAggregateZero.
if (V.empty())
return ConstantAggregateZero::get(Ty);
for (unsigned i = 0, e = V.size(); i != e; ++i) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// If this is an all-zero array, return a ConstantAggregateZero object. If
// all undef, return an UndefValue, if "all simple", then return a
// ConstantDataArray.
Constant *C = V[0];
if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
return UndefValue::get(Ty);
if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
return ConstantAggregateZero::get(Ty);
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
// We speculatively build the elements here even if it turns out that there
// is a constantexpr or something else weird in the array, since it is so
// uncommon for that to happen.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getType()->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataArray::get(C->getContext(), Elts);
} else if (CI->getType()->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataArray::get(C->getContext(), Elts);
} else if (CI->getType()->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataArray::get(C->getContext(), Elts);
} else if (CI->getType()->isIntegerTy(64)) {
SmallVector<uint64_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataArray::get(C->getContext(), Elts);
}
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isFloatTy()) {
SmallVector<float, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
Elts.push_back(CFP->getValueAPF().convertToFloat());
else
break;
if (Elts.size() == V.size())
return ConstantDataArray::get(C->getContext(), Elts);
} else if (CFP->getType()->isDoubleTy()) {
SmallVector<double, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
Elts.push_back(CFP->getValueAPF().convertToDouble());
else
break;
if (Elts.size() == V.size())
return ConstantDataArray::get(C->getContext(), Elts);
}
}
}
// Otherwise, we really do want to create a ConstantArray.
return pImpl->ArrayConstants.getOrCreate(Ty, V);
}
/// getTypeForElements - Return an anonymous struct type to use for a constant
/// with the specified set of elements. The list must not be empty.
StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
ArrayRef<Constant*> V,
bool Packed) {
unsigned VecSize = V.size();
SmallVector<Type*, 16> EltTypes(VecSize);
for (unsigned i = 0; i != VecSize; ++i)
EltTypes[i] = V[i]->getType();
return StructType::get(Context, EltTypes, Packed);
}
StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
bool Packed) {
assert(!V.empty() &&
"ConstantStruct::getTypeForElements cannot be called on empty list");
return getTypeForElements(V[0]->getContext(), V, Packed);
}
ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
: Constant(T, ConstantStructVal,
OperandTraits<ConstantStruct>::op_end(this) - V.size(),
V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant structure");
for (unsigned i = 0, e = V.size(); i != e; ++i)
assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
"Initializer for struct element doesn't match struct element type!");
std::copy(V.begin(), V.end(), op_begin());
}
// ConstantStruct accessors.
Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
"Incorrect # elements specified to ConstantStruct::get");
// Create a ConstantAggregateZero value if all elements are zeros.
bool isZero = true;
bool isUndef = false;
if (!V.empty()) {
isUndef = isa<UndefValue>(V[0]);
isZero = V[0]->isNullValue();
if (isUndef || isZero) {
for (unsigned i = 0, e = V.size(); i != e; ++i) {
if (!V[i]->isNullValue())
isZero = false;
if (!isa<UndefValue>(V[i]))
isUndef = false;
}
}
}
if (isZero)
return ConstantAggregateZero::get(ST);
if (isUndef)
return UndefValue::get(ST);
return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
}
Constant *ConstantStruct::get(StructType *T, ...) {
va_list ap;
SmallVector<Constant*, 8> Values;
va_start(ap, T);
while (Constant *Val = va_arg(ap, llvm::Constant*))
Values.push_back(Val);
va_end(ap);
return get(T, Values);
}
ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
: Constant(T, ConstantVectorVal,
OperandTraits<ConstantVector>::op_end(this) - V.size(),
V.size()) {
for (size_t i = 0, e = V.size(); i != e; i++)
assert(V[i]->getType() == T->getElementType() &&
"Initializer for vector element doesn't match vector element type!");
std::copy(V.begin(), V.end(), op_begin());
}
// ConstantVector accessors.
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
assert(!V.empty() && "Vectors can't be empty");
VectorType *T = VectorType::get(V.front()->getType(), V.size());
LLVMContextImpl *pImpl = T->getContext().pImpl;
// If this is an all-undef or all-zero vector, return a
// ConstantAggregateZero or UndefValue.
Constant *C = V[0];
bool isZero = C->isNullValue();
bool isUndef = isa<UndefValue>(C);
if (isZero || isUndef) {
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
isZero = isUndef = false;
break;
}
}
if (isZero)
return ConstantAggregateZero::get(T);
if (isUndef)
return UndefValue::get(T);
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
// We speculatively build the elements here even if it turns out that there
// is a constantexpr or something else weird in the array, since it is so
// uncommon for that to happen.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getType()->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataVector::get(C->getContext(), Elts);
} else if (CI->getType()->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataVector::get(C->getContext(), Elts);
} else if (CI->getType()->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataVector::get(C->getContext(), Elts);
} else if (CI->getType()->isIntegerTy(64)) {
SmallVector<uint64_t, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
Elts.push_back(CI->getZExtValue());
else
break;
if (Elts.size() == V.size())
return ConstantDataVector::get(C->getContext(), Elts);
}
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isFloatTy()) {
SmallVector<float, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
Elts.push_back(CFP->getValueAPF().convertToFloat());
else
break;
if (Elts.size() == V.size())
return ConstantDataVector::get(C->getContext(), Elts);
} else if (CFP->getType()->isDoubleTy()) {
SmallVector<double, 16> Elts;
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
Elts.push_back(CFP->getValueAPF().convertToDouble());
else
break;
if (Elts.size() == V.size())
return ConstantDataVector::get(C->getContext(), Elts);
}
}
}
// Otherwise, the element type isn't compatible with ConstantDataVector, or
// the operand list constants a ConstantExpr or something else strange.
return pImpl->VectorConstants.getOrCreate(T, V);
}
Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
// If this splat is compatible with ConstantDataVector, use it instead of
// ConstantVector.
if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
ConstantDataSequential::isElementTypeCompatible(V->getType()))
return ConstantDataVector::getSplat(NumElts, V);
SmallVector<Constant*, 32> Elts(NumElts, V);
return get(Elts);
}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
return Instruction::isCast(getOpcode());
}
bool ConstantExpr::isCompare() const {
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
if (getOpcode() != Instruction::GetElementPtr) return false;
gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
User::const_op_iterator OI = llvm::next(this->op_begin());
// Skip the first index, as it has no static limit.
++GEPI;
++OI;
// The remaining indices must be compile-time known integers within the
// bounds of the corresponding notional static array types.
for (; GEPI != E; ++GEPI, ++OI) {
ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
if (!CI) return false;
if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
if (CI->getValue().getActiveBits() > 64 ||
CI->getZExtValue() >= ATy->getNumElements())
return false;
}
// All the indices checked out.
return true;
}
bool ConstantExpr::hasIndices() const {
return getOpcode() == Instruction::ExtractValue ||
getOpcode() == Instruction::InsertValue;
}
ArrayRef<unsigned> ConstantExpr::getIndices() const {
if (const ExtractValueConstantExpr *EVCE =
dyn_cast<ExtractValueConstantExpr>(this))
return EVCE->Indices;
return cast<InsertValueConstantExpr>(this)->Indices;
}
unsigned ConstantExpr::getPredicate() const {
assert(isCompare());
return ((const CompareConstantExpr*)this)->predicate;
}
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
if (getOperand(OpNo) == Op)
return const_cast<ConstantExpr*>(this);
SmallVector<Constant*, 8> NewOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
NewOps.push_back(i == OpNo ? Op : getOperand(i));
return getWithOperands(NewOps);
}
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified array must
/// have the same number of operands as our current one.
Constant *ConstantExpr::
getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
bool AnyChange = Ty != getType();
for (unsigned i = 0; i != Ops.size(); ++i)
AnyChange |= Ops[i] != getOperand(i);
if (!AnyChange) // No operands changed, return self.
return const_cast<ConstantExpr*>(this);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::InsertValue:
return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
case Instruction::ExtractValue:
return ConstantExpr::getExtractValue(Ops[0], getIndices());
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
cast<GEPOperator>(this)->isInBounds());
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
}
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
if (Ty->isIntegerTy(1))
return Val == 0 || Val == 1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
uint64_t Max = (1ll << NumBits) - 1;
return Val <= Max;
}
bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
unsigned NumBits = Ty->getIntegerBitWidth();
if (Ty->isIntegerTy(1))
return Val == 0 || Val == 1 || Val == -1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
int64_t Min = -(1ll << (NumBits-1));
int64_t Max = (1ll << (NumBits-1)) - 1;
return (Val >= Min && Val <= Max);
}
bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// FIXME rounding mode needs to be more flexible
case Type::HalfTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEhalf)
return true;
Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::FloatTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle)
return true;
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::DoubleTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble)
return true;
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::X86_FP80TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::x87DoubleExtended;
case Type::FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::IEEEquad;
case Type::PPC_FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::PPCDoubleDouble;
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
"Cannot create an aggregate zero of non-aggregate type!");
ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
if (Entry == 0)
Entry = new ConstantAggregateZero(Ty);
return Entry;
}
/// destroyConstant - Remove the constant from the constant table.
///
void ConstantAggregateZero::destroyConstant() {
getContext().pImpl->CAZConstants.erase(getType());
destroyConstantImpl();
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantArray::destroyConstant() {
getType()->getContext().pImpl->ArrayConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantStruct::get() implementation...
//
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
getType()->getContext().pImpl->StructConstants.remove(this);
destroyConstantImpl();
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
getType()->getContext().pImpl->VectorConstants.remove(this);
destroyConstantImpl();
}
/// getSplatValue - If this is a splat vector constant, meaning that all of
/// the elements have the same value, return that value. Otherwise return 0.
Constant *Constant::getSplatValue() const {
assert(this->getType()->isVectorTy() && "Only valid for vectors!");
if (isa<ConstantAggregateZero>(this))
return getNullValue(this->getType()->getVectorElementType());
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
return CV->getSplatValue();
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
return CV->getSplatValue();
return 0;
}
/// getSplatValue - If this is a splat constant, where all of the
/// elements have the same value, return that value. Otherwise return null.
Constant *ConstantVector::getSplatValue() const {
// Check out first element.
Constant *Elt = getOperand(0);
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
if (getOperand(I) != Elt)
return 0;
return Elt;
}
/// If C is a constant integer then return its value, otherwise C must be a
/// vector of constant integers, all equal, and the common value is returned.
const APInt &Constant::getUniqueInteger() const {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->getValue();
assert(this->getSplatValue() && "Doesn't contain a unique integer!");
const Constant *C = this->getAggregateElement(0U);
assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
return cast<ConstantInt>(C)->getValue();
}
//---- ConstantPointerNull::get() implementation.
//
ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
if (Entry == 0)
Entry = new ConstantPointerNull(Ty);
return Entry;
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
getContext().pImpl->CPNConstants.erase(getType());
// Free the constant and any dangling references to it.
destroyConstantImpl();
}
//---- UndefValue::get() implementation.
//
UndefValue *UndefValue::get(Type *Ty) {
UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
if (Entry == 0)
Entry = new UndefValue(Ty);
return Entry;
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
// Free the constant and any dangling references to it.
getContext().pImpl->UVConstants.erase(getType());
destroyConstantImpl();
}
//---- BlockAddress::get() implementation.
//
BlockAddress *BlockAddress::get(BasicBlock *BB) {
assert(BB->getParent() != 0 && "Block must have a parent");
return get(BB->getParent(), BB);
}
BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
BlockAddress *&BA =
F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
if (BA == 0)
BA = new BlockAddress(F, BB);
assert(BA->getFunction() == F && "Basic block moved between functions");
return BA;
}
BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
&Op<0>(), 2) {
setOperand(0, F);
setOperand(1, BB);
BB->AdjustBlockAddressRefCount(1);
}
// destroyConstant - Remove the constant from the constant table.
//
void BlockAddress::destroyConstant() {
getFunction()->getType()->getContext().pImpl
->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
getBasicBlock()->AdjustBlockAddressRefCount(-1);
destroyConstantImpl();
}
void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
// This could be replacing either the Basic Block or the Function. In either
// case, we have to remove the map entry.
Function *NewF = getFunction();
BasicBlock *NewBB = getBasicBlock();
if (U == &Op<0>())
NewF = cast<Function>(To);
else
NewBB = cast<BasicBlock>(To);
// See if the 'new' entry already exists, if not, just update this in place
// and return early.
BlockAddress *&NewBA =
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
if (NewBA == 0) {
getBasicBlock()->AdjustBlockAddressRefCount(-1);
// Remove the old entry, this can't cause the map to rehash (just a
// tombstone will get added).
getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
getBasicBlock()));
NewBA = this;
setOperand(0, NewF);
setOperand(1, NewBB);
getBasicBlock()->AdjustBlockAddressRefCount(1);
return;
}
// Otherwise, I do need to replace this with an existing value.
assert(NewBA != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(NewBA);
destroyConstant();
}
//---- ConstantExpr::get() implementations.
//
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static inline Constant *getFoldedCast(
Instruction::CastOps opc, Constant *C, Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
return FC;
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key(opc, argVec);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
switch (opc) {
default:
llvm_unreachable("Invalid cast opcode");
case Instruction::Trunc: return getTrunc(C, Ty);
case Instruction::ZExt: return getZExt(C, Ty);
case Instruction::SExt: return getSExt(C, Ty);
case Instruction::FPTrunc: return getFPTrunc(C, Ty);
case Instruction::FPExt: return getFPExtend(C, Ty);
case Instruction::UIToFP: return getUIToFP(C, Ty);
case Instruction::SIToFP: return getSIToFP(C, Ty);
case Instruction::FPToUI: return getFPToUI(C, Ty);
case Instruction::FPToSI: return getFPToSI(C, Ty);
case Instruction::PtrToInt: return getPtrToInt(C, Ty);
case Instruction::IntToPtr: return getIntToPtr(C, Ty);
case Instruction::BitCast: return getBitCast(C, Ty);
}
}
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getZExt(C, Ty);
}
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getSExt(C, Ty);
}
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getTrunc(C, Ty);
}
Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
assert(S->getType()->isPointerTy() && "Invalid cast");
assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
if (Ty->isIntegerTy())
return getPtrToInt(S, Ty);
return getBitCast(S, Ty);
}
Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
bool isSigned) {
assert(C->getType()->isIntOrIntVectorTy() &&
Ty->isIntOrIntVectorTy() && "Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
if (SrcBits == DstBits)
return C; // Avoid a useless cast
Instruction::CastOps opcode =
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
return getFoldedCast(Instruction::Trunc, C, Ty);
}
Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
return getFoldedCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
return getFoldedCast(Instruction::ZExt, C, Ty);
}
Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"This is an illegal floating point truncation!");
return getFoldedCast(Instruction::FPTrunc, C, Ty);
}
Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"This is an illegal floating point extension!");
return getFoldedCast(Instruction::FPExt, C, Ty);
}
Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal uint to floating point cast!");
return getFoldedCast(Instruction::UIToFP, C, Ty);
}
Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal sint to floating point cast!");
return getFoldedCast(Instruction::SIToFP, C, Ty);
}
Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to uint cast!");
return getFoldedCast(Instruction::FPToUI, C, Ty);
}
Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to sint cast!");
return getFoldedCast(Instruction::FPToSI, C, Ty);
}
Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
assert(C->getType()->getScalarType()->isPointerTy() &&
"PtrToInt source must be pointer or pointer vector");
assert(DstTy->getScalarType()->isIntegerTy() &&
"PtrToInt destination must be integer or integer vector");
assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
if (isa<VectorType>(C->getType()))
assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
"Invalid cast between a different number of vector elements");
return getFoldedCast(Instruction::PtrToInt, C, DstTy);
}
Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
assert(C->getType()->getScalarType()->isIntegerTy() &&
"IntToPtr source must be integer or integer vector");
assert(DstTy->getScalarType()->isPointerTy() &&
"IntToPtr destination must be a pointer or pointer vector");
assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
if (isa<VectorType>(C->getType()))
assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
"Invalid cast between a different number of vector elements");
return getFoldedCast(Instruction::IntToPtr, C, DstTy);
}
Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
"Invalid constantexpr bitcast!");
// It is common to ask for a bitcast of a value to its own type, handle this
// speedily.
if (C->getType() == DstTy) return C;
return getFoldedCast(Instruction::BitCast, C, DstTy);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags) {
// Check the operands for consistency first.
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case Instruction::UDiv:
case Instruction::SDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::URem:
case Instruction::SRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases.
std::vector<Constant*> argVec(1, C1);
argVec.push_back(C2);
ExprMapKeyType Key(Opcode, argVec, 0, Flags);
LLVMContextImpl *pImpl = C1->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
}
Constant *ConstantExpr::getSizeOf(Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *GEP = getGetElementPtr(
Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getAlignOf(Type* Ty) {
// alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Type *AligningTy =
StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getGetElementPtr(NullPtr, Indices);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
FieldNo));
}
Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
// offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx[] = {
ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
FieldNo
};
Constant *GEP = getGetElementPtr(
Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getCompare(unsigned short Predicate,
Constant *C1, Constant *C2) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
switch (Predicate) {
default: llvm_unreachable("Invalid CmpInst predicate");
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return getFCmp(Predicate, C1, C2);
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return getICmp(Predicate, C1, C2);
}
}
Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
std::vector<Constant*> argVec(3, C);
argVec[1] = V1;
argVec[2] = V2;
ExprMapKeyType Key(Instruction::Select, argVec);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
bool InBounds) {
assert(C->getType()->isPtrOrPtrVectorTy() &&
"Non-pointer type for constant GetElementPtr expression");
if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
return FC; // Fold a few common cases.
// Get the result type of the getelementptr!
Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
assert(Ty && "GEP indices invalid!");
unsigned AS = C->getType()->getPointerAddressSpace();
Type *ReqTy = Ty->getPointerTo(AS);
if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(1 + Idxs.size());
ArgVec.push_back(C);
for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
"getelementptr index type missmatch");
assert((!Idxs[i]->getType()->isVectorTy() ||
ReqTy->getVectorNumElements() ==
Idxs[i]->getType()->getVectorNumElements()) &&
"getelementptr index type missmatch");
ArgVec.push_back(cast<Constant>(Idxs[i]));
}
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
InBounds ? GEPOperator::IsInBounds : 0);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *
ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getNumElements());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *
ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getNumElements());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(Val->getType()->isVectorTy() &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType()->isIntegerTy(32) &&
"Extractelement index must be i32 type!");
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases.
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
Type *ReqTy = Val->getType()->getVectorElementType();
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx) {
assert(Val->getType()->isVectorTy() &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == Val->getType()->getVectorElementType() &&
"Insertelement types must match!");
assert(Idx->getType()->isIntegerTy(32) &&
"Insertelement index must be i32 type!");
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases.
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Elt);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Constant *Mask) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
return FC; // Fold a few common cases.
unsigned NElts = Mask->getType()->getVectorNumElements();
Type *EltTy = V1->getType()->getVectorElementType();
Type *ShufTy = VectorType::get(EltTy, NElts);
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, V1);
ArgVec.push_back(V2);
ArgVec.push_back(Mask);
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
}
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
ArrayRef<unsigned> Idxs) {
assert(ExtractValueInst::getIndexedType(Agg->getType(),
Idxs) == Val->getType() &&
"insertvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant insertvalue expression");
Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
assert(FC && "insertvalue constant expr couldn't be folded!");
return FC;
}
Constant *ConstantExpr::getExtractValue(Constant *Agg,
ArrayRef<unsigned> Idxs) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create extractelement operation on non-first-class type!");
Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
(void)ReqTy;
assert(ReqTy && "extractvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant extractvalue expression");
Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
assert(FC && "ExtractValue constant expr couldn't be folded!");
return FC;
}
Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NEG a nonintegral value!");
return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
C, HasNUW, HasNSW);
}
Constant *ConstantExpr::getFNeg(Constant *C) {
assert(C->getType()->isFPOrFPVectorTy() &&
"Cannot FNEG a non-floating-point value!");
return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
}
Constant *ConstantExpr::getNot(Constant *C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NOT a nonintegral value!");
return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Add, C1, C2, Flags);
}
Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
return get(Instruction::FAdd, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Sub, C1, C2, Flags);
}
Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
return get(Instruction::FSub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Mul, C1, C2, Flags);
}
Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
return get(Instruction::FMul, C1, C2);
}
Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::UDiv, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::SDiv, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
return get(Instruction::FDiv, C1, C2);
}
Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
return get(Instruction::URem, C1, C2);
}
Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
return get(Instruction::SRem, C1, C2);
}
Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
return get(Instruction::FRem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
return get(Instruction::Xor, C1, C2);
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Shl, C1, C2, Flags);
}
Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::LShr, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::AShr, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
/// getBinOpIdentity - Return the identity for the given binary operation,
/// i.e. a constant C such that X op C = X and C op X = X for every X. It
/// returns null if the operator doesn't have an identity.
Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
// Doesn't have an identity.
return 0;
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
return Constant::getNullValue(Ty);
case Instruction::Mul:
return ConstantInt::get(Ty, 1);
case Instruction::And:
return Constant::getAllOnesValue(Ty);
}
}
/// getBinOpAbsorber - Return the absorbing element for the given binary
/// operation, i.e. a constant C such that X op C = C and C op X = C for
/// every X. For example, this returns zero for integer multiplication.
/// It returns null if the operator doesn't have an absorbing element.
Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
// Doesn't have an absorber.
return 0;
case Instruction::Or:
return Constant::getAllOnesValue(Ty);
case Instruction::And:
case Instruction::Mul:
return Constant::getNullValue(Ty);
}
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
getType()->getContext().pImpl->ExprConstants.remove(this);
destroyConstantImpl();
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
Type *DestTy)
: ConstantExpr(DestTy, Instruction::GetElementPtr,
OperandTraits<GetElementPtrConstantExpr>::op_end(this)
- (IdxList.size()+1), IdxList.size()+1) {
OperandList[0] = C;
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
OperandList[i+1] = IdxList[i];
}
//===----------------------------------------------------------------------===//
// ConstantData* implementations
void ConstantDataArray::anchor() {}
void ConstantDataVector::anchor() {}
/// getElementType - Return the element type of the array/vector.
Type *ConstantDataSequential::getElementType() const {
return getType()->getElementType();
}
StringRef ConstantDataSequential::getRawDataValues() const {
return StringRef(DataElements, getNumElements()*getElementByteSize());
}
/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
/// formed with a vector or array of the specified element type.
/// ConstantDataArray only works with normal float and int types that are
/// stored densely in memory, not with things like i42 or x86_f80.
bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
switch (IT->getBitWidth()) {
case 8:
case 16:
case 32:
case 64:
return true;
default: break;
}
}
return false;
}
/// getNumElements - Return the number of elements in the array or vector.
unsigned ConstantDataSequential::getNumElements() const {
if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
return AT->getNumElements();
return getType()->getVectorNumElements();
}
/// getElementByteSize - Return the size in bytes of the elements in the data.
uint64_t ConstantDataSequential::getElementByteSize() const {
return getElementType()->getPrimitiveSizeInBits()/8;
}
/// getElementPointer - Return the start of the specified element.
const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
assert(Elt < getNumElements() && "Invalid Elt");
return DataElements+Elt*getElementByteSize();
}
/// isAllZeros - return true if the array is empty or all zeros.
static bool isAllZeros(StringRef Arr) {
for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
if (*I != 0)
return false;
return true;
}
/// getImpl - This is the underlying implementation of all of the
/// ConstantDataSequential::get methods. They all thunk down to here, providing
/// the correct element type. We take the bytes in as a StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
assert(isElementTypeCompatible(Ty->getSequentialElementType()));
// If the elements are all zero or there are no elements, return a CAZ, which
// is more dense and canonical.
if (isAllZeros(Elements))
return ConstantAggregateZero::get(Ty);
// Do a lookup to see if we have already formed one of these.
StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
// The bucket can point to a linked list of different CDS's that have the same
// body but different types. For example, 0,0,0,1 could be a 4 element array
// of i8, or a 1-element array of i32. They'll both end up in the same
/// StringMap bucket, linked up by their Next pointers. Walk the list.
ConstantDataSequential **Entry = &Slot.getValue();
for (ConstantDataSequential *Node = *Entry; Node != 0;
Entry = &Node->Next, Node = *Entry)
if (Node->getType() == Ty)
return Node;
// Okay, we didn't get a hit. Create a node of the right class, link it in,
// and return it.
if (isa<ArrayType>(Ty))
return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
assert(isa<VectorType>(Ty));
return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
}
void ConstantDataSequential::destroyConstant() {
// Remove the constant from the StringMap.
StringMap<ConstantDataSequential*> &CDSConstants =
getType()->getContext().pImpl->CDSConstants;
StringMap<ConstantDataSequential*>::iterator Slot =
CDSConstants.find(getRawDataValues());
assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
ConstantDataSequential **Entry = &Slot->getValue();
// Remove the entry from the hash table.
if ((*Entry)->Next == 0) {
// If there is only one value in the bucket (common case) it must be this
// entry, and removing the entry should remove the bucket completely.
assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
getContext().pImpl->CDSConstants.erase(Slot);
} else {
// Otherwise, there are multiple entries linked off the bucket, unlink the
// node we care about but keep the bucket around.
for (ConstantDataSequential *Node = *Entry; ;
Entry = &Node->Next, Node = *Entry) {
assert(Node && "Didn't find entry in its uniquing hash table!");
// If we found our entry, unlink it from the list and we're done.
if (Node == this) {
*Entry = Node->Next;
break;
}
}
}
// If we were part of a list, make sure that we don't delete the list that is
// still owned by the uniquing map.
Next = 0;
// Finally, actually delete it.
destroyConstantImpl();
}
/// get() constructors - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
/// getString - This method constructs a CDS and initializes it with a text
/// string. The default behavior (AddNull==true) causes a null terminator to
/// be placed at the end of the array (increasing the length of the string by
/// one more than the StringRef would normally indicate. Pass AddNull=false
/// to disable this behavior.
Constant *ConstantDataArray::getString(LLVMContext &Context,
StringRef Str, bool AddNull) {
if (!AddNull) {
const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
Str.size()));
}
SmallVector<uint8_t, 64> ElementVals;
ElementVals.append(Str.begin(), Str.end());
ElementVals.push_back(0);
return get(Context, ElementVals);
}
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
assert(isElementTypeCompatible(V->getType()) &&
"Element type not compatible with ConstantData");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getType()->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (CI->getType()->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (CI->getType()->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType()->isFloatTy()) {
SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
return get(V->getContext(), Elts);
}
if (CFP->getType()->isDoubleTy()) {
SmallVector<double, 16> Elts(NumElts,
CFP->getValueAPF().convertToDouble());
return get(V->getContext(), Elts);
}
}
return ConstantVector::getSplat(NumElts, V);
}
/// getElementAsInteger - If this is a sequential container of integers (of
/// any size), return the specified element in the low bits of a uint64_t.
uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
assert(isa<IntegerType>(getElementType()) &&
"Accessor can only be used when element is an integer");
const char *EltPtr = getElementPointer(Elt);
// The data is stored in host byte order, make sure to cast back to the right
// type to load with the right endianness.
switch (getElementType()->getIntegerBitWidth()) {
default: llvm_unreachable("Invalid bitwidth for CDS");
case 8:
return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
case 16:
return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
case 32:
return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
case 64:
return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
}
}
/// getElementAsAPFloat - If this is a sequential container of floating point
/// type, return the specified element as an APFloat.
APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
const char *EltPtr = getElementPointer(Elt);
switch (getElementType()->getTypeID()) {
default:
llvm_unreachable("Accessor can only be used when element is float/double!");
case Type::FloatTyID: {
const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
return APFloat(*const_cast<float *>(FloatPrt));
}
case Type::DoubleTyID: {
const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
return APFloat(*const_cast<double *>(DoublePtr));
}
}
}
/// getElementAsFloat - If this is an sequential container of floats, return
/// the specified element as a float.
float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
assert(getElementType()->isFloatTy() &&
"Accessor can only be used when element is a 'float'");
const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
return *const_cast<float *>(EltPtr);
}
/// getElementAsDouble - If this is an sequential container of doubles, return
/// the specified element as a float.
double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
assert(getElementType()->isDoubleTy() &&
"Accessor can only be used when element is a 'float'");
const double *EltPtr =
reinterpret_cast<const double *>(getElementPointer(Elt));
return *const_cast<double *>(EltPtr);
}
/// getElementAsConstant - Return a Constant for a specified index's element.
/// Note that this has to compute a new constant to return, so it isn't as
/// efficient as getElementAsInteger/Float/Double.
Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
}
/// isString - This method returns true if this is an array of i8.
bool ConstantDataSequential::isString() const {
return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
}
/// isCString - This method returns true if the array "isString", ends with a
/// nul byte, and does not contains any other nul bytes.
bool ConstantDataSequential::isCString() const {
if (!isString())
return false;
StringRef Str = getAsString();
// The last value must be nul.
if (Str.back() != 0) return false;
// Other elements must be non-nul.
return Str.drop_back().find(0) == StringRef::npos;
}
/// getSplatValue - If this is a splat constant, meaning that all of the
/// elements have the same value, return that value. Otherwise return NULL.
Constant *ConstantDataVector::getSplatValue() const {
const char *Base = getRawDataValues().data();
// Compare elements 1+ to the 0'th element.
unsigned EltSize = getElementByteSize();
for (unsigned i = 1, e = getNumElements(); i != e; ++i)
if (memcmp(Base, Base+i*EltSize, EltSize))
return 0;
// If they're all the same, return the 0th one as a representative.
return getElementAsConstant(0);
}
//===----------------------------------------------------------------------===//
// replaceUsesOfWithOnConstant implementations
/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
/// 'From' to be uses of 'To'. This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here. Consider
/// a large array that uses 'From' 1000 times. By handling this case all here,
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
/// single invocation handles all 1000 uses. Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
SmallVector<Constant*, 8> Values;
LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
Lookup.first = cast<ArrayType>(getType());
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
unsigned NumUpdated = 0;
// Keep track of whether all the values in the array are "ToC".
bool AllSame = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
AllSame &= Val == ToC;
}
Constant *Replacement = 0;
if (AllSame && ToC->isNullValue()) {
Replacement = ConstantAggregateZero::get(getType());
} else if (AllSame && isa<UndefValue>(ToC)) {
Replacement = UndefValue::get(getType());
} else {
// Check to see if we have this array type already.
Lookup.second = makeArrayRef(Values);
LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
pImpl->ArrayConstants.find(Lookup);
if (I != pImpl->ArrayConstants.map_end()) {
Replacement = I->first;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
pImpl->ArrayConstants.remove(this);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
if (NumUpdated == 1) {
unsigned OperandToUpdate = U - OperandList;
assert(getOperand(OperandToUpdate) == From &&
"ReplaceAllUsesWith broken!");
setOperand(OperandToUpdate, ToC);
} else {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (getOperand(i) == From)
setOperand(i, ToC);
}
pImpl->ArrayConstants.insert(this);
return;
}
}
// Otherwise, I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
SmallVector<Constant*, 8> Values;
LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
Lookup.first = cast<StructType>(getType());
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
bool isAllUndef = false;
if (ToC->isNullValue()) {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
} else if (isa<UndefValue>(ToC)) {
isAllUndef = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
}
} else {
for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
}
Values[OperandToUpdate] = ToC;
LLVMContextImpl *pImpl = getContext().pImpl;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else if (isAllUndef) {
Replacement = UndefValue::get(getType());
} else {
// Check to see if we have this struct type already.
Lookup.second = makeArrayRef(Values);
LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
pImpl->StructConstants.find(Lookup);
if (I != pImpl->StructConstants.map_end()) {
Replacement = I->first;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
pImpl->StructConstants.remove(this);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
pImpl->StructConstants.insert(this);
return;
}
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array...
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = cast<Constant>(To);
Values.push_back(Val);
}
Constant *Replacement = get(Values);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Use *U) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
SmallVector<Constant*, 8> NewOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Op = getOperand(i);
NewOps.push_back(Op == From ? To : Op);
}
Constant *Replacement = getWithOperands(NewOps);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
Instruction *ConstantExpr::getAsInstruction() {
SmallVector<Value*,4> ValueOperands;
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
ValueOperands.push_back(cast<Value>(I));
ArrayRef<Value*> Ops(ValueOperands);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return CastInst::Create((Instruction::CastOps)getOpcode(),
Ops[0], getType());
case Instruction::Select:
return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ExtractElementInst::Create(Ops[0], Ops[1]);
case Instruction::InsertValue:
return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
case Instruction::ExtractValue:
return ExtractValueInst::Create(Ops[0], getIndices());
case Instruction::ShuffleVector:
return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (cast<GEPOperator>(this)->isInBounds())
return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
else
return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
case Instruction::ICmp:
case Instruction::FCmp:
return CmpInst::Create((Instruction::OtherOps)getOpcode(),
getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
BinaryOperator *BO =
BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
Ops[0], Ops[1]);
if (isa<OverflowingBinaryOperator>(BO)) {
BO->setHasNoUnsignedWrap(SubclassOptionalData &
OverflowingBinaryOperator::NoUnsignedWrap);
BO->setHasNoSignedWrap(SubclassOptionalData &
OverflowingBinaryOperator::NoSignedWrap);
}
if (isa<PossiblyExactOperator>(BO))
BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
return BO;
}
}