llvm-6502/lib/Target/IA64/IA64ISelDAGToDAG.cpp

688 lines
26 KiB
C++
Raw Normal View History

//===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Duraid Madina and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for IA64,
// converting a legalized dag to an IA64 dag.
//
//===----------------------------------------------------------------------===//
#include "IA64.h"
#include "IA64TargetMachine.h"
#include "IA64ISelLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
namespace {
Statistic<> FusedFP ("ia64-codegen", "Number of fused fp operations");
Statistic<> FrameOff("ia64-codegen", "Number of frame idx offsets collapsed");
//===--------------------------------------------------------------------===//
/// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
/// instructions for SelectionDAG operations.
///
class IA64DAGToDAGISel : public SelectionDAGISel {
IA64TargetLowering IA64Lowering;
unsigned GlobalBaseReg;
public:
IA64DAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(IA64Lowering), IA64Lowering(TM) {}
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
return SelectionDAGISel::runOnFunction(Fn);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDOperand getI64Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
/// base register. Return the virtual register that holds this value.
// SDOperand getGlobalBaseReg(); TODO: hmm
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDOperand Select(SDOperand Op);
SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
unsigned OCHi, unsigned OCLo,
bool IsArithmetic = false,
bool Negate = false);
SDNode *SelectBitfieldInsert(SDNode *N);
/// SelectCC - Select a comparison of the specified values with the
/// specified condition code, returning the CR# of the expression.
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
/// SelectAddr - Given the specified address, return the two operands for a
/// load/store instruction, and return true if it should be an indexed [r+r]
/// operation.
bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
SDOperand BuildSDIVSequence(SDNode *N);
SDOperand BuildUDIVSequence(SDNode *N);
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
virtual const char *getPassName() const {
return "IA64 (Itanium) DAG->DAG Instruction Selector";
}
// Include the pieces autogenerated from the target description.
#include "IA64GenDAGISel.inc"
private:
SDOperand SelectDIV(SDOperand Op);
};
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// The selection process is inherently a bottom-up recursive process (users
// select their uses before themselves). Given infinite stack space, we
// could just start selecting on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, select the entry node, then all its uses,
// iteratively instead of recursively.
std::vector<SDOperand> Worklist;
Worklist.push_back(DAG.getEntryNode());
// Note that we can do this in the IA64 target (scanning forward across token
// chain edges) because no nodes ever get folded across these edges. On a
// target like X86 which supports load/modify/store operations, this would
// have to be more careful.
while (!Worklist.empty()) {
SDOperand Node = Worklist.back();
Worklist.pop_back();
// Chose from the least deep of the top two nodes.
if (!Worklist.empty() &&
Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
std::swap(Worklist.back(), Node);
if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
Node.Val->getOpcode() < IA64ISD::FIRST_NUMBER) ||
CodeGenMap.count(Node)) continue;
for (SDNode::use_iterator UI = Node.Val->use_begin(),
E = Node.Val->use_end(); UI != E; ++UI) {
// Scan the values. If this use has a value that is a token chain, add it
// to the worklist.
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
if (User->getValueType(i) == MVT::Other) {
Worklist.push_back(SDOperand(User, i));
break;
}
}
// Finally, legalize this node.
Select(Node);
}
// Select target instructions for the DAG.
DAG.setRoot(Select(DAG.getRoot()));
CodeGenMap.clear();
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
SDOperand IA64DAGToDAGISel::SelectDIV(SDOperand Op) {
SDNode *N = Op.Val;
SDOperand Chain = Select(N->getOperand(0));
SDOperand Tmp1 = Select(N->getOperand(0));
SDOperand Tmp2 = Select(N->getOperand(1));
bool isFP=false;
if(MVT::isFloatingPoint(Tmp1.getValueType()))
isFP=true;
bool isModulus=false; // is it a division or a modulus?
bool isSigned=false;
switch(N->getOpcode()) {
case ISD::FDIV:
case ISD::SDIV: isModulus=false; isSigned=true; break;
case ISD::UDIV: isModulus=false; isSigned=false; break;
case ISD::FREM:
case ISD::SREM: isModulus=true; isSigned=true; break;
case ISD::UREM: isModulus=true; isSigned=false; break;
}
// TODO: check for integer divides by powers of 2 (or other simple patterns?)
SDOperand TmpPR, TmpPR2;
SDOperand TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8;
SDOperand TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15;
SDOperand Result;
// OK, emit some code:
if(!isFP) {
// first, load the inputs into FP regs.
TmpF1 = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp1);
Chain = TmpF1.getValue(1);
TmpF2 = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp2);
Chain = TmpF2.getValue(1);
// next, convert the inputs to FP
if(isSigned) {
TmpF3 = CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF1);
Chain = TmpF3.getValue(1);
TmpF4 = CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF2);
Chain = TmpF4.getValue(1);
} else {
TmpF3 = CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF1);
Chain = TmpF3.getValue(1);
TmpF4 = CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF2);
Chain = TmpF4.getValue(1);
}
} else { // this is an FP divide/remainder, so we 'leak' some temp
// regs and assign TmpF3=Tmp1, TmpF4=Tmp2
TmpF3=Tmp1;
TmpF4=Tmp2;
}
// we start by computing an approximate reciprocal (good to 9 bits?)
// note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
TmpF5 = CurDAG->getTargetNode(IA64::FRCPAS1, MVT::f64, MVT::i1,
TmpF3, TmpF4);
TmpPR = TmpF5.getValue(1);
Chain = TmpF5.getValue(2);
if(!isModulus) { // if this is a divide, we worry about div-by-zero
SDOperand bogusPR = CurDAG->getTargetNode(IA64::CMPEQ, MVT::i1,
CurDAG->getRegister(IA64::r0, MVT::i64),
CurDAG->getRegister(IA64::r0, MVT::i64));
Chain = bogusPR.getValue(1);
TmpPR2 = CurDAG->getTargetNode(IA64::TPCMPNE, MVT::i1, bogusPR,
CurDAG->getRegister(IA64::r0, MVT::i64),
CurDAG->getRegister(IA64::r0, MVT::i64), TmpPR);
Chain = TmpPR2.getValue(1);
}
SDOperand F0 = CurDAG->getRegister(IA64::F0, MVT::f64);
SDOperand F1 = CurDAG->getRegister(IA64::F1, MVT::f64);
// now we apply newton's method, thrice! (FIXME: this is ~72 bits of
// precision, don't need this much for f32/i32)
TmpF6 = CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
TmpF4, TmpF5, F1, TmpPR);
Chain = TmpF6.getValue(1);
TmpF7 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF3, TmpF5, F0, TmpPR);
Chain = TmpF7.getValue(1);
TmpF8 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF6, TmpF6, F0, TmpPR);
Chain = TmpF8.getValue(1);
TmpF9 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF6, TmpF7, TmpF7, TmpPR);
Chain = TmpF9.getValue(1);
TmpF10 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF6, TmpF5, TmpF5, TmpPR);
Chain = TmpF10.getValue(1);
TmpF11 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF8, TmpF9, TmpF9, TmpPR);
Chain = TmpF11.getValue(1);
TmpF12 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF8, TmpF10, TmpF10, TmpPR);
Chain = TmpF12.getValue(1);
TmpF13 = CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
TmpF4, TmpF11, TmpF3, TmpPR);
Chain = TmpF13.getValue(1);
// FIXME: this is unfortunate :(
// the story is that the dest reg of the fnma above and the fma below
// (and therefore possibly the src of the fcvt.fx[u] as well) cannot
// be the same register, or this code breaks if the first argument is
// zero. (e.g. without this hack, 0%8 yields -64, not 0.)
TmpF14 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
TmpF13, TmpF12, TmpF11, TmpPR);
Chain = TmpF14.getValue(1);
if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! !
SDOperand bogus = CurDAG->getTargetNode(IA64::IUSE, MVT::Other, TmpF13); // hack :(
Chain = bogus.getValue(0); // hmmm
}
if(!isFP) {
// round to an integer
if(isSigned) {
TmpF15 = CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1, MVT::i64, TmpF14);
Chain = TmpF15.getValue(1);
}
else {
TmpF15 = CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1, MVT::i64, TmpF14);
Chain = TmpF15.getValue(1);
}
} else {
TmpF15 = TmpF14;
// EXERCISE: can you see why TmpF15=TmpF14 does not work here, and
// we really do need the above FMOV? ;)
}
if(!isModulus) {
if(isFP) { // extra worrying about div-by-zero
// we do a 'conditional fmov' (of the correct result, depending
// on how the frcpa predicate turned out)
SDOperand bogoResult = CurDAG->getTargetNode(IA64::PFMOV, MVT::f64,
TmpF12, TmpPR2);
Chain = bogoResult.getValue(1);
Result = CurDAG->getTargetNode(IA64::CFMOV, MVT::f64, bogoResult,
TmpF15, TmpPR);
Chain = Result.getValue(1);
}
else {
Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, TmpF15);
Chain = Result.getValue(1);
}
} else { // this is a modulus
if(!isFP) {
// answer = q * (-b) + a
SDOperand TmpI = CurDAG->getTargetNode(IA64::SUB, MVT::i64,
CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2);
Chain = TmpI.getValue(1);
SDOperand TmpF = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, TmpI);
Chain = TmpF.getValue(1);
SDOperand ModulusResult = CurDAG->getTargetNode(IA64::XMAL, MVT::f64,
TmpF15, TmpF, TmpF1);
Chain = ModulusResult.getValue(1);
Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, ModulusResult);
Chain = Result.getValue(1);
} else { // FP modulus! The horror... the horror....
assert(0 && "sorry, no FP modulus just yet!\n!\n");
}
}
return Result;
}
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDOperand IA64DAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
N->getOpcode() < IA64ISD::FIRST_NUMBER)
return Op; // Already selected.
// If this has already been converted, use it.
std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
if (CGMI != CodeGenMap.end()) return CGMI->second;
switch (N->getOpcode()) {
default: break;
case ISD::Register: return Op; // XXX: this is a hack, tblgen one day?
case IA64ISD::BRCALL: { // XXX: this is also a hack!
SDOperand Chain = Select(N->getOperand(0));
SDOperand InFlag; // Null incoming flag value.
if(N->getNumOperands()==3) // we have an incoming chain, callee and flag
InFlag = Select(N->getOperand(2));
unsigned CallOpcode;
SDOperand CallOperand;
// if we can call directly, do so
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
CallOpcode = IA64::BRCALL_IPREL_GA;
CallOperand = CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i64);
} else if (ExternalSymbolSDNode *ESSDN = // FIXME: we currently NEED this
// case for correctness, to avoid
// "non-pic code with imm reloc.n
// against dynamic symbol" errors
dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
CallOpcode = IA64::BRCALL_IPREL_ES;
CallOperand = N->getOperand(1);
} else {
// otherwise we need to load the function descriptor,
// load the branch target (function)'s entry point and GP,
// branch (call) then restore the GP
SDOperand FnDescriptor = Select(N->getOperand(1));
// load the branch target's entry point [mem] and
// GP value [mem+8]
SDOperand targetEntryPoint=CurDAG->getTargetNode(IA64::LD8, MVT::i64,
FnDescriptor);
Chain = targetEntryPoint.getValue(1);
SDOperand targetGPAddr=CurDAG->getTargetNode(IA64::ADDS, MVT::i64,
FnDescriptor, CurDAG->getConstant(8, MVT::i64));
Chain = targetGPAddr.getValue(1);
SDOperand targetGP=CurDAG->getTargetNode(IA64::LD8, MVT::i64,
targetGPAddr);
Chain = targetGP.getValue(1);
Chain = CurDAG->getCopyToReg(Chain, IA64::r1, targetGP, InFlag);
InFlag = Chain.getValue(1);
Chain = CurDAG->getCopyToReg(Chain, IA64::B6, targetEntryPoint, InFlag); // FLAG these?
InFlag = Chain.getValue(1);
CallOperand = CurDAG->getRegister(IA64::B6, MVT::i64);
CallOpcode = IA64::BRCALL_INDIRECT;
}
// Finally, once everything is setup, emit the call itself
if(InFlag.Val)
Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, CallOperand, InFlag);
else // there might be no arguments
Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, CallOperand, Chain);
InFlag = Chain.getValue(1);
std::vector<SDOperand> CallResults;
CallResults.push_back(Chain);
CallResults.push_back(InFlag);
for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
CodeGenMap[Op.getValue(i)] = CallResults[i];
return CallResults[Op.ResNo];
}
case IA64ISD::GETFD: {
SDOperand Input = Select(N->getOperand(0));
SDOperand Result = CurDAG->getTargetNode(IA64::GETFD, MVT::i64, MVT::Flag, Input);
CodeGenMap[Op.getValue(0)] = Result;
CodeGenMap[Op.getValue(1)] = Result.getValue(1);
return Result.getValue(Op.ResNo);
}
case ISD::CALL:
case ISD::TAILCALL: { {
// FIXME: This is a workaround for a bug in tblgen.
// Pattern #47: (call:Flag (tglobaladdr:i32):$dst, ICC:Flag)
// Emits: (CALL:void (tglobaladdr:i32):$dst)
// Pattern complexity = 2 cost = 1
SDOperand N1 = N->getOperand(1);
if (N1.getOpcode() != ISD::TargetGlobalAddress &&
N1.getOpcode() != ISD::ExternalSymbol) goto P47Fail;
SDOperand InFlag = SDOperand(0, 0);
SDOperand Chain = N->getOperand(0);
SDOperand Tmp0 = N1;
Chain = Select(Chain);
SDOperand Result;
if (N->getNumOperands() == 3) {
InFlag = Select(N->getOperand(2));
Result = CurDAG->getTargetNode(IA64::BRCALL, MVT::Other, MVT::Flag, Tmp0,
Chain, InFlag);
} else {
Result = CurDAG->getTargetNode(IA64::BRCALL, MVT::Other, MVT::Flag, Tmp0,
Chain);
}
Chain = CodeGenMap[SDOperand(N, 0)] = Result.getValue(0);
CodeGenMap[SDOperand(N, 1)] = Result.getValue(1);
return Result.getValue(Op.ResNo);
}
P47Fail:;
}
case ISD::FDIV:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM: return SelectDIV(Op);
case ISD::DYNAMIC_STACKALLOC: {
if (!isa<ConstantSDNode>(N->getOperand(2)) ||
cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
std::cerr << "Cannot allocate stack object with greater alignment than"
<< " the stack alignment yet!";
abort();
}
SDOperand Chain = Select(N->getOperand(0));
SDOperand Amt = Select(N->getOperand(1));
SDOperand Reg = CurDAG->getRegister(IA64::r12, MVT::i64);
SDOperand Val = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64);
Chain = Val.getValue(1);
// Subtract the amount (guaranteed to be a multiple of the stack alignment)
// from the stack pointer, giving us the result pointer.
SDOperand Result = Select(CurDAG->getNode(ISD::SUB, MVT::i64, Val, Amt));
// Copy this result back into r12.
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, Reg, Result);
// Copy this result back out of r12 to make sure we're not using the stack
// space without decrementing the stack pointer.
Result = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64);
// Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
CodeGenMap[Op.getValue(0)] = Result;
CodeGenMap[Op.getValue(1)] = Result.getValue(1);
return SDOperand(Result.Val, Op.ResNo);
}
case ISD::ConstantFP: {
SDOperand Chain = CurDAG->getEntryNode(); // this is a constant, so..
if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0))
return CurDAG->getCopyFromReg(Chain, IA64::F0, MVT::f64);
else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0))
return CurDAG->getCopyFromReg(Chain, IA64::F1, MVT::f64);
else
assert(0 && "Unexpected FP constant!");
}
case ISD::FrameIndex: { // TODO: reduce creepyness
int FI = cast<FrameIndexSDNode>(N)->getIndex();
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64,
CurDAG->getTargetFrameIndex(FI, MVT::i64));
return CurDAG->getTargetNode(IA64::MOV, MVT::i64,
CurDAG->getTargetFrameIndex(FI, MVT::i64));
}
case ISD::ConstantPool: {
Constant *C = cast<ConstantPoolSDNode>(N)->get();
SDOperand CPI = CurDAG->getTargetConstantPool(C, MVT::i64);
return CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, // ?
CurDAG->getRegister(IA64::r1, MVT::i64), CPI);
}
case ISD::GlobalAddress: {
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64);
SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64,
CurDAG->getRegister(IA64::r1, MVT::i64), GA);
return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
}
/* XXX case ISD::ExternalSymbol: {
SDOperand EA = CurDAG->getTargetExternalSymbol(cast<ExternalSymbolSDNode>(N)->getSymbol(),
MVT::i64);
SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, MVT::i64,
CurDAG->getRegister(IA64::r1, MVT::i64), EA);
return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
}
*/
case ISD::LOAD:
case ISD::EXTLOAD:
case ISD::ZEXTLOAD: {
SDOperand Chain = Select(N->getOperand(0));
SDOperand Address = Select(N->getOperand(1));
MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
unsigned Opc;
switch (TypeBeingLoaded) {
default: N->dump(); assert(0 && "Cannot load this type!");
case MVT::i1: { // this is a bool
Opc = IA64::LD1; // first we load a byte, then compare for != 0
if(N->getValueType(0) == MVT::i1) // XXX: early exit!
return CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other,
CurDAG->getTargetNode(Opc, MVT::i64, Address),
CurDAG->getRegister(IA64::r0, MVT::i64),
Chain).getValue(Op.ResNo);
/* otherwise, we want to load a bool into something bigger: LD1
will do that for us, so we just fall through */
}
case MVT::i8: Opc = IA64::LD1; break;
case MVT::i16: Opc = IA64::LD2; break;
case MVT::i32: Opc = IA64::LD4; break;
case MVT::i64: Opc = IA64::LD8; break;
case MVT::f32: Opc = IA64::LDF4; break;
case MVT::f64: Opc = IA64::LDF8; break;
}
// TODO: comment this
return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
Address, Chain).getValue(Op.ResNo);
}
case ISD::TRUNCSTORE:
case ISD::STORE: {
SDOperand Address = Select(N->getOperand(2));
SDOperand Chain = Select(N->getOperand(0));
unsigned Opc;
if (N->getOpcode() == ISD::STORE) {
switch (N->getOperand(1).getValueType()) {
default: assert(0 && "unknown type in store");
case MVT::i1: { // this is a bool
Opc = IA64::ST1; // we store either 0 or 1 as a byte
SDOperand Tmp =
CurDAG->getTargetNode(IA64::PADDS, MVT::i64,
CurDAG->getRegister(IA64::r0, MVT::i64),
CurDAG->getConstant(1, MVT::i64),
Select(N->getOperand(1)));
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain);
}
case MVT::i64: Opc = IA64::ST8; break;
case MVT::f64: Opc = IA64::STF8; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
default: assert(0 && "unknown type in truncstore");
case MVT::i8: Opc = IA64::ST1; break;
case MVT::i16: Opc = IA64::ST2; break;
case MVT::i32: Opc = IA64::ST4; break;
case MVT::f32: Opc = IA64::STF4; break;
}
}
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(2)),
Select(N->getOperand(1)), Chain);
}
case ISD::BRCOND: {
SDOperand Chain = Select(N->getOperand(0));
SDOperand CC = Select(N->getOperand(1));
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N->getOperand(2))->getBasicBlock();
//FIXME - we do NOT need long branches all the time
return CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC,
CurDAG->getBasicBlock(Dest), Chain);
}
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END: {
int64_t Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP;
return CurDAG->SelectNodeTo(N, Opc, MVT::Other,
getI64Imm(Amt), Select(N->getOperand(0)));
}
case ISD::RET: {
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
SDOperand InFlag;
switch (N->getNumOperands()) {
default:
assert(0 && "Unknown return instruction!");
case 2: {
SDOperand RetVal = Select(N->getOperand(1));
switch (RetVal.getValueType()) {
default: assert(0 && "I don't know how to return this type! (promote?)");
// FIXME: do I need to add support for bools here?
// (return '0' or '1' in r8, basically...)
//
// FIXME: need to round floats - 80 bits is bad, the tester
// told me so
case MVT::i64:
// we mark r8 as live on exit up above in LowerArguments()
// BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
Chain = CurDAG->getCopyToReg(Chain, IA64::r8, RetVal);
InFlag = Chain.getValue(1);
break;
case MVT::f64:
// we mark F8 as live on exit up above in LowerArguments()
// BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1);
Chain = CurDAG->getCopyToReg(Chain, IA64::F8, RetVal);
InFlag = Chain.getValue(1);
break;
}
break;
}
case 1:
break;
}
// we need to copy VirtGPR (the vreg (to become a real reg)) that holds
// the output of this function's alloc instruction back into ar.pfs
// before we return. this copy must not float up above the last
// outgoing call in this function!!!
SDOperand AR_PFSVal = CurDAG->getCopyFromReg(Chain, IA64Lowering.VirtGPR,
MVT::i64);
Chain = AR_PFSVal.getValue(1);
Chain = CurDAG->getCopyToReg(Chain, IA64::AR_PFS, AR_PFSVal);
// and then just emit a 'ret' instruction
// before returning, restore the ar.pfs register (set by the 'alloc' up top)
// BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR);
//
return CurDAG->SelectNodeTo(N, IA64::RET, MVT::Other, Chain);
}
case ISD::BR:
// FIXME: we don't need long branches all the time!
return CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other,
N->getOperand(1), Select(N->getOperand(0)));
}
return SelectCode(Op);
}
/// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
/// into an IA64-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createIA64DAGToDAGInstructionSelector(TargetMachine &TM) {
return new IA64DAGToDAGISel(TM);
}