llvm-6502/lib/CodeGen/MachineCSE.cpp

677 lines
23 KiB
C++
Raw Normal View History

//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global common subexpression elimination on machine
// instructions using a scoped hash table based value numbering scheme. It
// must be run while the machine function is still in SSA form.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-cse"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumCSEs, "Number of common subexpression eliminated");
STATISTIC(NumPhysCSEs,
"Number of physreg referencing common subexpr eliminated");
STATISTIC(NumCrossBBCSEs,
"Number of cross-MBB physreg referencing CS eliminated");
STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
namespace {
class MachineCSE : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
AliasAnalysis *AA;
MachineDominatorTree *DT;
MachineRegisterInfo *MRI;
public:
static char ID; // Pass identification
MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
initializeMachineCSEPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.addPreservedID(MachineLoopInfoID);
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
void releaseMemory() override {
ScopeMap.clear();
Exps.clear();
}
private:
const unsigned LookAheadLimit;
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
typedef ScopedHashTable<MachineInstr*, unsigned,
MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
typedef ScopedHTType::ScopeTy ScopeType;
DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
ScopedHTType VNT;
SmallVector<MachineInstr*, 64> Exps;
unsigned CurrVN;
bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
bool isPhysDefTriviallyDead(unsigned Reg,
MachineBasicBlock::const_iterator I,
MachineBasicBlock::const_iterator E) const;
bool hasLivePhysRegDefUses(const MachineInstr *MI,
const MachineBasicBlock *MBB,
SmallSet<unsigned,8> &PhysRefs,
SmallVectorImpl<unsigned> &PhysDefs,
bool &PhysUseDef) const;
bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
SmallSet<unsigned,8> &PhysRefs,
SmallVectorImpl<unsigned> &PhysDefs,
bool &NonLocal) const;
bool isCSECandidate(MachineInstr *MI);
bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
MachineInstr *CSMI, MachineInstr *MI);
void EnterScope(MachineBasicBlock *MBB);
void ExitScope(MachineBasicBlock *MBB);
bool ProcessBlock(MachineBasicBlock *MBB);
void ExitScopeIfDone(MachineDomTreeNode *Node,
DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
bool PerformCSE(MachineDomTreeNode *Node);
};
} // end anonymous namespace
char MachineCSE::ID = 0;
char &llvm::MachineCSEID = MachineCSE::ID;
INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
"Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MachineCSE, "machine-cse",
"Machine Common Subexpression Elimination", false, false)
bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB) {
bool Changed = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (!MRI->hasOneNonDBGUse(Reg))
// Only coalesce single use copies. This ensure the copy will be
// deleted.
continue;
MachineInstr *DefMI = MRI->getVRegDef(Reg);
if (!DefMI->isCopy())
continue;
unsigned SrcReg = DefMI->getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
continue;
if (DefMI->getOperand(0).getSubReg())
continue;
// FIXME: We should trivially coalesce subregister copies to expose CSE
// opportunities on instructions with truncated operands (see
// cse-add-with-overflow.ll). This can be done here as follows:
// if (SrcSubReg)
// RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
// SrcSubReg);
// MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
//
// The 2-addr pass has been updated to handle coalesced subregs. However,
// some machine-specific code still can't handle it.
// To handle it properly we also need a way find a constrained subregister
// class given a super-reg class and subreg index.
if (DefMI->getOperand(1).getSubReg())
continue;
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
if (!MRI->constrainRegClass(SrcReg, RC))
continue;
DEBUG(dbgs() << "Coalescing: " << *DefMI);
DEBUG(dbgs() << "*** to: " << *MI);
MO.setReg(SrcReg);
MRI->clearKillFlags(SrcReg);
DefMI->eraseFromParent();
++NumCoalesces;
Changed = true;
}
return Changed;
}
bool
MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
MachineBasicBlock::const_iterator I,
MachineBasicBlock::const_iterator E) const {
unsigned LookAheadLeft = LookAheadLimit;
while (LookAheadLeft) {
// Skip over dbg_value's.
while (I != E && I->isDebugValue())
++I;
if (I == E)
// Reached end of block, register is obviously dead.
return true;
bool SeenDef = false;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = I->getOperand(i);
if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
SeenDef = true;
if (!MO.isReg() || !MO.getReg())
continue;
if (!TRI->regsOverlap(MO.getReg(), Reg))
continue;
if (MO.isUse())
// Found a use!
return false;
SeenDef = true;
}
if (SeenDef)
// See a def of Reg (or an alias) before encountering any use, it's
// trivially dead.
return true;
--LookAheadLeft;
++I;
}
return false;
}
/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
/// physical registers (except for dead defs of physical registers). It also
/// returns the physical register def by reference if it's the only one and the
/// instruction does not uses a physical register.
bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
const MachineBasicBlock *MBB,
SmallSet<unsigned,8> &PhysRefs,
SmallVectorImpl<unsigned> &PhysDefs,
bool &PhysUseDef) const{
// First, add all uses to PhysRefs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// Reading constant physregs is ok.
if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
PhysRefs.insert(*AI);
}
// Next, collect all defs into PhysDefs. If any is already in PhysRefs
// (which currently contains only uses), set the PhysUseDef flag.
PhysUseDef = false;
MachineBasicBlock::const_iterator I = MI; I = std::next(I);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// Check against PhysRefs even if the def is "dead".
if (PhysRefs.count(Reg))
PhysUseDef = true;
// If the def is dead, it's ok. But the def may not marked "dead". That's
// common since this pass is run before livevariables. We can scan
// forward a few instructions and check if it is obviously dead.
if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
PhysDefs.push_back(Reg);
}
// Finally, add all defs to PhysRefs as well.
for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
PhysRefs.insert(*AI);
return !PhysRefs.empty();
}
bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
SmallSet<unsigned,8> &PhysRefs,
SmallVectorImpl<unsigned> &PhysDefs,
bool &NonLocal) const {
// For now conservatively returns false if the common subexpression is
// not in the same basic block as the given instruction. The only exception
// is if the common subexpression is in the sole predecessor block.
const MachineBasicBlock *MBB = MI->getParent();
const MachineBasicBlock *CSMBB = CSMI->getParent();
bool CrossMBB = false;
if (CSMBB != MBB) {
if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
return false;
for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
// Avoid extending live range of physical registers if they are
//allocatable or reserved.
return false;
}
CrossMBB = true;
}
MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
MachineBasicBlock::const_iterator E = MI;
MachineBasicBlock::const_iterator EE = CSMBB->end();
unsigned LookAheadLeft = LookAheadLimit;
while (LookAheadLeft) {
// Skip over dbg_value's.
while (I != E && I != EE && I->isDebugValue())
++I;
if (I == EE) {
assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
(void)CrossMBB;
CrossMBB = false;
NonLocal = true;
I = MBB->begin();
EE = MBB->end();
continue;
}
if (I == E)
return true;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = I->getOperand(i);
// RegMasks go on instructions like calls that clobber lots of physregs.
// Don't attempt to CSE across such an instruction.
if (MO.isRegMask())
return false;
if (!MO.isReg() || !MO.isDef())
continue;
unsigned MOReg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(MOReg))
continue;
if (PhysRefs.count(MOReg))
return false;
}
--LookAheadLeft;
++I;
}
return false;
}
bool MachineCSE::isCSECandidate(MachineInstr *MI) {
if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
MI->isInlineAsm() || MI->isDebugValue())
return false;
// Ignore copies.
if (MI->isCopyLike())
return false;
// Ignore stuff that we obviously can't move.
if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
MI->hasUnmodeledSideEffects())
return false;
if (MI->mayLoad()) {
// Okay, this instruction does a load. As a refinement, we allow the target
// to decide whether the loaded value is actually a constant. If so, we can
// actually use it as a load.
if (!MI->isInvariantLoad(AA))
// FIXME: we should be able to hoist loads with no other side effects if
// there are no other instructions which can change memory in this loop.
// This is a trivial form of alias analysis.
return false;
}
return true;
}
/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
/// common expression that defines Reg.
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
MachineInstr *CSMI, MachineInstr *MI) {
// FIXME: Heuristics that works around the lack the live range splitting.
// If CSReg is used at all uses of Reg, CSE should not increase register
// pressure of CSReg.
bool MayIncreasePressure = true;
if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
TargetRegisterInfo::isVirtualRegister(Reg)) {
MayIncreasePressure = false;
SmallPtrSet<MachineInstr*, 8> CSUses;
for (MachineRegisterInfo::use_instr_nodbg_iterator
I = MRI->use_instr_nodbg_begin(CSReg), E = MRI->use_instr_nodbg_end();
I != E; ++I) {
CSUses.insert(&*I);
}
for (MachineRegisterInfo::use_instr_nodbg_iterator
I = MRI->use_instr_nodbg_begin(Reg), E = MRI->use_instr_nodbg_end();
I != E; ++I) {
if (!CSUses.count(&*I)) {
MayIncreasePressure = true;
break;
}
}
}
if (!MayIncreasePressure) return true;
// Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
// an immediate predecessor. We don't want to increase register pressure and
// end up causing other computation to be spilled.
if (MI->isAsCheapAsAMove()) {
MachineBasicBlock *CSBB = CSMI->getParent();
MachineBasicBlock *BB = MI->getParent();
if (CSBB != BB && !CSBB->isSuccessor(BB))
return false;
}
// Heuristics #2: If the expression doesn't not use a vr and the only use
// of the redundant computation are copies, do not cse.
bool HasVRegUse = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
HasVRegUse = true;
break;
}
}
if (!HasVRegUse) {
bool HasNonCopyUse = false;
for (MachineRegisterInfo::use_instr_nodbg_iterator
I = MRI->use_instr_nodbg_begin(Reg), E = MRI->use_instr_nodbg_end();
I != E; ++I) {
// Ignore copies.
if (!I->isCopyLike()) {
HasNonCopyUse = true;
break;
}
}
if (!HasNonCopyUse)
return false;
}
// Heuristics #3: If the common subexpression is used by PHIs, do not reuse
// it unless the defined value is already used in the BB of the new use.
bool HasPHI = false;
SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
for (MachineRegisterInfo::use_instr_nodbg_iterator
I = MRI->use_instr_nodbg_begin(CSReg), E = MRI->use_instr_nodbg_end();
I != E; ++I) {
HasPHI |= I->isPHI();
CSBBs.insert(I->getParent());
}
if (!HasPHI)
return true;
return CSBBs.count(MI->getParent());
}
void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
ScopeType *Scope = new ScopeType(VNT);
ScopeMap[MBB] = Scope;
}
void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
assert(SI != ScopeMap.end());
delete SI->second;
ScopeMap.erase(SI);
}
bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
bool Changed = false;
SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
SmallVector<unsigned, 2> ImplicitDefsToUpdate;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
MachineInstr *MI = &*I;
++I;
if (!isCSECandidate(MI))
continue;
bool FoundCSE = VNT.count(MI);
if (!FoundCSE) {
// Look for trivial copy coalescing opportunities.
if (PerformTrivialCoalescing(MI, MBB)) {
Changed = true;
// After coalescing MI itself may become a copy.
if (MI->isCopyLike())
continue;
FoundCSE = VNT.count(MI);
}
}
// Commute commutable instructions.
bool Commuted = false;
if (!FoundCSE && MI->isCommutable()) {
MachineInstr *NewMI = TII->commuteInstruction(MI);
if (NewMI) {
Commuted = true;
FoundCSE = VNT.count(NewMI);
if (NewMI != MI) {
// New instruction. It doesn't need to be kept.
NewMI->eraseFromParent();
Changed = true;
} else if (!FoundCSE)
// MI was changed but it didn't help, commute it back!
(void)TII->commuteInstruction(MI);
}
}
// If the instruction defines physical registers and the values *may* be
// used, then it's not safe to replace it with a common subexpression.
// It's also not safe if the instruction uses physical registers.
bool CrossMBBPhysDef = false;
SmallSet<unsigned, 8> PhysRefs;
SmallVector<unsigned, 2> PhysDefs;
bool PhysUseDef = false;
if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
PhysDefs, PhysUseDef)) {
FoundCSE = false;
// ... Unless the CS is local or is in the sole predecessor block
// and it also defines the physical register which is not clobbered
// in between and the physical register uses were not clobbered.
// This can never be the case if the instruction both uses and
// defines the same physical register, which was detected above.
if (!PhysUseDef) {
unsigned CSVN = VNT.lookup(MI);
MachineInstr *CSMI = Exps[CSVN];
if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
FoundCSE = true;
}
}
if (!FoundCSE) {
VNT.insert(MI, CurrVN++);
Exps.push_back(MI);
continue;
}
// Found a common subexpression, eliminate it.
unsigned CSVN = VNT.lookup(MI);
MachineInstr *CSMI = Exps[CSVN];
DEBUG(dbgs() << "Examining: " << *MI);
DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
// Check if it's profitable to perform this CSE.
bool DoCSE = true;
unsigned NumDefs = MI->getDesc().getNumDefs() +
MI->getDesc().getNumImplicitDefs();
for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned OldReg = MO.getReg();
unsigned NewReg = CSMI->getOperand(i).getReg();
// Go through implicit defs of CSMI and MI, if a def is not dead at MI,
// we should make sure it is not dead at CSMI.
if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
ImplicitDefsToUpdate.push_back(i);
if (OldReg == NewReg) {
--NumDefs;
continue;
}
assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
TargetRegisterInfo::isVirtualRegister(NewReg) &&
"Do not CSE physical register defs!");
if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
DoCSE = false;
break;
}
// Don't perform CSE if the result of the old instruction cannot exist
// within the register class of the new instruction.
const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
if (!MRI->constrainRegClass(NewReg, OldRC)) {
DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
DoCSE = false;
break;
}
CSEPairs.push_back(std::make_pair(OldReg, NewReg));
--NumDefs;
}
// Actually perform the elimination.
if (DoCSE) {
for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
MRI->clearKillFlags(CSEPairs[i].second);
}
// Go through implicit defs of CSMI and MI, if a def is not dead at MI,
// we should make sure it is not dead at CSMI.
for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
if (CrossMBBPhysDef) {
// Add physical register defs now coming in from a predecessor to MBB
// livein list.
while (!PhysDefs.empty()) {
unsigned LiveIn = PhysDefs.pop_back_val();
if (!MBB->isLiveIn(LiveIn))
MBB->addLiveIn(LiveIn);
}
++NumCrossBBCSEs;
}
MI->eraseFromParent();
++NumCSEs;
if (!PhysRefs.empty())
++NumPhysCSEs;
if (Commuted)
++NumCommutes;
Changed = true;
} else {
VNT.insert(MI, CurrVN++);
Exps.push_back(MI);
}
CSEPairs.clear();
ImplicitDefsToUpdate.clear();
}
return Changed;
}
/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
/// dominator tree node if its a leaf or all of its children are done. Walk
/// up the dominator tree to destroy ancestors which are now done.
void
MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
if (OpenChildren[Node])
return;
// Pop scope.
ExitScope(Node->getBlock());
// Now traverse upwards to pop ancestors whose offsprings are all done.
while (MachineDomTreeNode *Parent = Node->getIDom()) {
unsigned Left = --OpenChildren[Parent];
if (Left != 0)
break;
ExitScope(Parent->getBlock());
Node = Parent;
}
}
bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
SmallVector<MachineDomTreeNode*, 32> Scopes;
SmallVector<MachineDomTreeNode*, 8> WorkList;
DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
CurrVN = 0;
// Perform a DFS walk to determine the order of visit.
WorkList.push_back(Node);
do {
Node = WorkList.pop_back_val();
Scopes.push_back(Node);
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
unsigned NumChildren = Children.size();
OpenChildren[Node] = NumChildren;
for (unsigned i = 0; i != NumChildren; ++i) {
MachineDomTreeNode *Child = Children[i];
WorkList.push_back(Child);
}
} while (!WorkList.empty());
// Now perform CSE.
bool Changed = false;
for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
MachineDomTreeNode *Node = Scopes[i];
MachineBasicBlock *MBB = Node->getBlock();
EnterScope(MBB);
Changed |= ProcessBlock(MBB);
// If it's a leaf node, it's done. Traverse upwards to pop ancestors.
ExitScopeIfDone(Node, OpenChildren);
}
return Changed;
}
bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
TRI = MF.getTarget().getRegisterInfo();
MRI = &MF.getRegInfo();
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<MachineDominatorTree>();
return PerformCSE(DT->getRootNode());
}