llvm-6502/lib/Transforms/Utils/PromoteMemoryToRegister.cpp

878 lines
34 KiB
C++
Raw Normal View History

//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file promote memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using dominator frontiers to place PHI nodes, then traversing
// the function in depth-first order to rewrite loads and stores as appropriate.
// This is just the standard SSA construction algorithm to construct "pruned"
// SSA form.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
// Provide DenseMapKeyInfo for all pointers.
namespace llvm {
template<>
struct DenseMapKeyInfo<std::pair<BasicBlock*, unsigned> > {
static inline std::pair<BasicBlock*, unsigned> getEmptyKey() {
return std::make_pair((BasicBlock*)-1, ~0U);
}
static inline std::pair<BasicBlock*, unsigned> getTombstoneKey() {
return std::make_pair((BasicBlock*)-2, 0U);
}
static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
return DenseMapKeyInfo<void*>::getHashValue(Val.first) + Val.second*2;
}
static bool isPod() { return true; }
};
}
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca.
///
bool llvm::isAllocaPromotable(const AllocaInst *AI) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (isa<LoadInst>(*UI)) {
// noop
} else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store OF the AI, only INTO the AI.
} else {
return false; // Not a load or store.
}
return true;
}
namespace {
// Data package used by RenamePass()
class VISIBILITY_HIDDEN RenamePassData {
public:
typedef std::vector<Value *> ValVector;
RenamePassData() {}
RenamePassData(BasicBlock *B, BasicBlock *P,
const ValVector &V) : BB(B), Pred(P), Values(V) {}
BasicBlock *BB;
BasicBlock *Pred;
ValVector Values;
void swap(RenamePassData &RHS) {
std::swap(BB, RHS.BB);
std::swap(Pred, RHS.Pred);
Values.swap(RHS.Values);
}
};
struct VISIBILITY_HIDDEN PromoteMem2Reg {
/// Allocas - The alloca instructions being promoted.
///
std::vector<AllocaInst*> Allocas;
SmallVector<AllocaInst*, 16> &RetryList;
DominatorTree &DT;
DominanceFrontier &DF;
/// AST - An AliasSetTracker object to update. If null, don't update it.
///
AliasSetTracker *AST;
/// AllocaLookup - Reverse mapping of Allocas.
///
std::map<AllocaInst*, unsigned> AllocaLookup;
/// NewPhiNodes - The PhiNodes we're adding.
///
DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
/// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
/// it corresponds to.
DenseMap<PHINode*, unsigned> PhiToAllocaMap;
/// PointerAllocaValues - If we are updating an AliasSetTracker, then for
/// each alloca that is of pointer type, we keep track of what to copyValue
/// to the inserted PHI nodes here.
///
std::vector<Value*> PointerAllocaValues;
/// Visited - The set of basic blocks the renamer has already visited.
///
SmallPtrSet<BasicBlock*, 16> Visited;
/// BBNumbers - Contains a stable numbering of basic blocks to avoid
/// non-determinstic behavior.
DenseMap<BasicBlock*, unsigned> BBNumbers;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A,
SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
DominanceFrontier &df, AliasSetTracker *ast)
: Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
void run();
/// properlyDominates - Return true if I1 properly dominates I2.
///
bool properlyDominates(Instruction *I1, Instruction *I2) const {
if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
I1 = II->getNormalDest()->begin();
return DT.properlyDominates(I1->getParent(), I2->getParent());
}
/// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
///
bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
return DT.dominates(BB1, BB2);
}
private:
void RemoveFromAllocasList(unsigned &AllocaIdx) {
Allocas[AllocaIdx] = Allocas.back();
Allocas.pop_back();
--AllocaIdx;
}
void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
SmallPtrSet<PHINode*, 16> &DeadPHINodes);
bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
void PromoteLocallyUsedAllocas(BasicBlock *BB,
const std::vector<AllocaInst*> &AIs);
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncVals,
std::vector<RenamePassData> &Worklist);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
};
struct AllocaInfo {
std::vector<BasicBlock*> DefiningBlocks;
std::vector<BasicBlock*> UsingBlocks;
StoreInst *OnlyStore;
BasicBlock *OnlyBlock;
bool OnlyUsedInOneBlock;
Value *AllocaPointerVal;
void clear() {
DefiningBlocks.clear();
UsingBlocks.clear();
OnlyStore = 0;
OnlyBlock = 0;
OnlyUsedInOneBlock = true;
AllocaPointerVal = 0;
}
/// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
/// ivars.
void AnalyzeAlloca(AllocaInst *AI) {
clear();
// As we scan the uses of the alloca instruction, keep track of stores,
// and decide whether all of the loads and stores to the alloca are within
// the same basic block.
for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
U != E; ++U){
Instruction *User = cast<Instruction>(*U);
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
AllocaPointerVal = SI->getOperand(0);
OnlyStore = SI;
} else {
LoadInst *LI = cast<LoadInst>(User);
// Otherwise it must be a load instruction, keep track of variable reads
UsingBlocks.push_back(LI->getParent());
AllocaPointerVal = LI;
}
if (OnlyUsedInOneBlock) {
if (OnlyBlock == 0)
OnlyBlock = User->getParent();
else if (OnlyBlock != User->getParent())
OnlyUsedInOneBlock = false;
}
}
}
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
// LocallyUsedAllocas - Keep track of all of the alloca instructions which are
// only used in a single basic block. These instructions can be efficiently
// promoted by performing a single linear scan over that one block. Since
// individual basic blocks are sometimes large, we group together all allocas
// that are live in a single basic block by the basic block they are live in.
std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
if (AST) PointerAllocaValues.resize(Allocas.size());
AllocaInfo Info;
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI) &&
"Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
// Remove the alloca from the Allocas list, since it has been processed
RemoveFromAllocasList(AllocaNum);
++NumDeadAlloca;
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
Info.AnalyzeAlloca(AI);
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (Info.OnlyUsedInOneBlock) {
LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
// Remove the alloca from the Allocas list, since it will be processed.
RemoveFromAllocasList(AllocaNum);
continue;
}
// If there is only a single store to this value, replace any loads of
// it that are directly dominated by the definition with the value stored.
if (Info.DefiningBlocks.size() == 1) {
// Be aware of loads before the store.
std::set<BasicBlock*> ProcessedBlocks;
for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i)
// If the store dominates the block and if we haven't processed it yet,
// do so now.
if (dominates(Info.OnlyStore->getParent(), Info.UsingBlocks[i]))
if (ProcessedBlocks.insert(Info.UsingBlocks[i]).second) {
BasicBlock *UseBlock = Info.UsingBlocks[i];
// If the use and store are in the same block, do a quick scan to
// verify that there are no uses before the store.
if (UseBlock == Info.OnlyStore->getParent()) {
BasicBlock::iterator I = UseBlock->begin();
for (; &*I != Info.OnlyStore; ++I) { // scan block for store.
if (isa<LoadInst>(I) && I->getOperand(0) == AI)
break;
}
if (&*I != Info.OnlyStore) break; // Do not handle this case.
}
// Otherwise, if this is a different block or if all uses happen
// after the store, do a simple linear scan to replace loads with
// the stored value.
for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end();
I != E; ) {
if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
if (LI->getOperand(0) == AI) {
LI->replaceAllUsesWith(Info.OnlyStore->getOperand(0));
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
LI->eraseFromParent();
}
}
}
// Finally, remove this block from the UsingBlock set.
Info.UsingBlocks[i] = Info.UsingBlocks.back();
--i; --e;
}
// Finally, after the scan, check to see if the store is all that is left.
if (Info.UsingBlocks.empty()) {
++NumSingleStore;
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
continue;
}
}
if (AST)
PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
unsigned ID = 0;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
BBNumbers[I] = ID++;
}
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in.
//
unsigned CurrentVersion = 0;
SmallPtrSet<PHINode*, 16> InsertedPHINodes;
std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
while (!Info.DefiningBlocks.empty()) {
BasicBlock *BB = Info.DefiningBlocks.back();
Info.DefiningBlocks.pop_back();
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(BB);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
// In theory we don't need the indirection through the DFBlocks vector.
// In practice, the order of calling QueuePhiNode would depend on the
// (unspecified) ordering of basic blocks in the dominance frontier,
// which would give PHI nodes non-determinstic subscripts. Fix this by
// processing blocks in order of the occurance in the function.
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P)
DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
// Sort by which the block ordering in the function.
std::sort(DFBlocks.begin(), DFBlocks.end());
for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
BasicBlock *BB = DFBlocks[i].second;
if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
Info.DefiningBlocks.push_back(BB);
}
DFBlocks.clear();
}
}
// Now that we have inserted PHI nodes along the Iterated Dominance Frontier
// of the writes to the variable, scan through the reads of the variable,
// marking PHI nodes which are actually necessary as alive (by removing them
// from the InsertedPHINodes set). This is not perfect: there may PHI
// marked alive because of loads which are dominated by stores, but there
// will be no unmarked PHI nodes which are actually used.
//
for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i)
MarkDominatingPHILive(Info.UsingBlocks[i], AllocaNum, InsertedPHINodes);
Info.UsingBlocks.clear();
// If there are any PHI nodes which are now known to be dead, remove them!
for (SmallPtrSet<PHINode*, 16>::iterator I = InsertedPHINodes.begin(),
E = InsertedPHINodes.end(); I != E; ++I) {
PHINode *PN = *I;
bool Erased=NewPhiNodes.erase(std::make_pair(PN->getParent(), AllocaNum));
Erased=Erased;
assert(Erased && "PHI already removed?");
if (AST && isa<PointerType>(PN->getType()))
AST->deleteValue(PN);
PN->eraseFromParent();
PhiToAllocaMap.erase(PN);
}
// Keep the reverse mapping of the 'Allocas' array.
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
}
// Process all allocas which are only used in a single basic block.
for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
const std::vector<AllocaInst*> &LocAllocas = I->second;
assert(!LocAllocas.empty() && "empty alloca list??");
// It's common for there to only be one alloca in the list. Handle it
// efficiently.
if (LocAllocas.size() == 1) {
// If we can do the quick promotion pass, do so now.
if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
RetryList.push_back(LocAllocas[0]); // Failed, retry later.
} else {
// Locally promote anything possible. Note that if this is unable to
// promote a particular alloca, it puts the alloca onto the Allocas vector
// for global processing.
PromoteLocallyUsedAllocas(I->first, LocAllocas);
}
}
if (Allocas.empty())
return; // All of the allocas must have been trivial!
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
RenamePassData::ValVector Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
std::vector<RenamePassData> RenamePassWorkList;
RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
while (!RenamePassWorkList.empty()) {
RenamePassData RPD;
RPD.swap(RenamePassWorkList.back());
RenamePassWorkList.pop_back();
// RenamePass may add new worklist entries.
RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
}
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
Visited.clear();
// Remove the allocas themselves from the function.
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
if (!A->use_empty())
A->replaceAllUsesWith(UndefValue::get(A->getType()));
if (AST) AST->deleteValue(A);
A->eraseFromParent();
}
// Loop over all of the PHI nodes and see if there are any that we can get
// rid of because they merge all of the same incoming values. This can
// happen due to undef values coming into the PHI nodes. This process is
// iterative, because eliminating one PHI node can cause others to be removed.
bool EliminatedAPHI = true;
while (EliminatedAPHI) {
EliminatedAPHI = false;
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
if (Value *V = PN->hasConstantValue(true)) {
if (!isa<Instruction>(V) ||
properlyDominates(cast<Instruction>(V), PN)) {
if (AST && isa<PointerType>(PN->getType()))
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
NewPhiNodes.erase(I++);
EliminatedAPHI = true;
continue;
}
}
++I;
}
}
// At this point, the renamer has added entries to PHI nodes for all reachable
// code. Unfortunately, there may be unreachable blocks which the renamer
// hasn't traversed. If this is the case, the PHI nodes may not
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting undef values if they are missing any incoming values.
//
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
// We want to do this once per basic block. As such, only process a block
// when we find the PHI that is the first entry in the block.
PHINode *SomePHI = I->second;
BasicBlock *BB = SomePHI->getParent();
if (&BB->front() != SomePHI)
continue;
// Count the number of preds for BB.
SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
// Only do work here if there the PHI nodes are missing incoming values. We
// know that all PHI nodes that were inserted in a block will have the same
// number of incoming values, so we can just check any of them.
if (SomePHI->getNumIncomingValues() == Preds.size())
continue;
// Ok, now we know that all of the PHI nodes are missing entries for some
// basic blocks. Start by sorting the incoming predecessors for efficient
// access.
std::sort(Preds.begin(), Preds.end());
// Now we loop through all BB's which have entries in SomePHI and remove
// them from the Preds list.
for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
// Do a log(n) search of the Preds list for the entry we want.
SmallVector<BasicBlock*, 16>::iterator EntIt =
std::lower_bound(Preds.begin(), Preds.end(),
SomePHI->getIncomingBlock(i));
assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
"PHI node has entry for a block which is not a predecessor!");
// Remove the entry
Preds.erase(EntIt);
}
// At this point, the blocks left in the preds list must have dummy
// entries inserted into every PHI nodes for the block. Update all the phi
// nodes in this block that we are inserting (there could be phis before
// mem2reg runs).
unsigned NumBadPreds = SomePHI->getNumIncomingValues();
BasicBlock::iterator BBI = BB->begin();
while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
SomePHI->getNumIncomingValues() == NumBadPreds) {
Value *UndefVal = UndefValue::get(SomePHI->getType());
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
SomePHI->addIncoming(UndefVal, Preds[pred]);
}
}
NewPhiNodes.clear();
}
// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
// "minimal" SSA form. To do this, it inserts all of the PHI nodes on the IDF
// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
// each read of the variable. For each block that reads the variable, this
// function is called, which removes used PHI nodes from the DeadPHINodes set.
// After all of the reads have been processed, any PHI nodes left in the
// DeadPHINodes set are removed.
//
void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
SmallPtrSet<PHINode*, 16> &DeadPHINodes) {
// Scan the immediate dominators of this block looking for a block which has a
// PHI node for Alloca num. If we find it, mark the PHI node as being alive!
DomTreeNode *IDomNode = DT.getNode(BB);
for (DomTreeNode *IDom = IDomNode; IDom; IDom = IDom->getIDom()) {
BasicBlock *DomBB = IDom->getBlock();
DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator
I = NewPhiNodes.find(std::make_pair(DomBB, AllocaNum));
if (I != NewPhiNodes.end()) {
// Ok, we found an inserted PHI node which dominates this value.
PHINode *DominatingPHI = I->second;
// Find out if we previously thought it was dead. If so, mark it as being
// live by removing it from the DeadPHINodes set.
if (DeadPHINodes.erase(DominatingPHI)) {
// Now that we have marked the PHI node alive, also mark any PHI nodes
// which it might use as being alive as well.
for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
PI != PE; ++PI)
MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
}
}
}
}
/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
/// block. If this is the case, avoid traversing the CFG and inserting a lot of
/// potentially useless PHI nodes by just performing a single linear pass over
/// the basic block using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return true. This is necessary in cases where, due to control flow, the
/// alloca is potentially undefined on some control flow paths. e.g. code like
/// this is potentially correct:
///
/// for (...) { if (c) { A = undef; undef = B; } }
///
/// ... so long as A is not used before undef is set.
///
bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
assert(!AI->use_empty() && "There are no uses of the alloca!");
// Handle degenerate cases quickly.
if (AI->hasOneUse()) {
Instruction *U = cast<Instruction>(AI->use_back());
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
// Must be a load of uninitialized value.
LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
} else {
// Otherwise it must be a store which is never read.
assert(isa<StoreInst>(U));
}
BB->getInstList().erase(U);
} else {
// Uses of the uninitialized memory location shall get undef.
Value *CurVal = 0;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
if (LI->getOperand(0) == AI) {
if (!CurVal) return true; // Could not locally promote!
// Loads just returns the "current value"...
LI->replaceAllUsesWith(CurVal);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getOperand(1) == AI) {
// Store updates the "current value"...
CurVal = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// After traversing the basic block, there should be no more uses of the
// alloca, remove it now.
assert(AI->use_empty() && "Uses of alloca from more than one BB??");
if (AST) AST->deleteValue(AI);
AI->getParent()->getInstList().erase(AI);
++NumLocalPromoted;
return false;
}
/// PromoteLocallyUsedAllocas - This method is just like
/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
/// instructions in parallel. This is important in cases where we have large
/// basic blocks, as we don't want to rescan the entire basic block for each
/// alloca which is locally used in it (which might be a lot).
void PromoteMem2Reg::
PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
std::map<AllocaInst*, Value*> CurValues;
for (unsigned i = 0, e = AIs.size(); i != e; ++i)
CurValues[AIs[i]] = 0; // Insert with null value
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Is this a load of an alloca we are tracking?
if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
if (AIt != CurValues.end()) {
// If loading an uninitialized value, allow the inter-block case to
// handle it. Due to control flow, this might actually be ok.
if (AIt->second == 0) { // Use of locally uninitialized value??
RetryList.push_back(AI); // Retry elsewhere.
CurValues.erase(AIt); // Stop tracking this here.
if (CurValues.empty()) return;
} else {
// Loads just returns the "current value"...
LI->replaceAllUsesWith(AIt->second);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
}
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
if (AIt != CurValues.end()) {
// Store updates the "current value"...
AIt->second = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
unsigned &Version,
SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
// Look up the basic-block in question.
PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
// If the BB already has a phi node added for the i'th alloca then we're done!
if (PN) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(Version++), BB->begin());
PhiToAllocaMap[PN] = AllocaNo;
InsertedPHINodes.insert(PN);
if (AST && isa<PointerType>(PN->getType()))
AST->copyValue(PointerAllocaValues[AllocaNo], PN);
return true;
}
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
// stores to the allocas which we are promoting. IncomingVals indicates what
// value each Alloca contains on exit from the predecessor block Pred.
//
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncomingVals,
std::vector<RenamePassData> &Worklist) {
// If we are inserting any phi nodes into this BB, they will already be in the
// block.
if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
// Pred may have multiple edges to BB. If so, we want to add N incoming
// values to each PHI we are inserting on the first time we see the edge.
// Check to see if APN already has incoming values from Pred. This also
// prevents us from modifying PHI nodes that are not currently being
// inserted.
bool HasPredEntries = false;
for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
if (APN->getIncomingBlock(i) == Pred) {
HasPredEntries = true;
break;
}
}
// If we have PHI nodes to update, compute the number of edges from Pred to
// BB.
if (!HasPredEntries) {
TerminatorInst *PredTerm = Pred->getTerminator();
unsigned NumEdges = 0;
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
if (PredTerm->getSuccessor(i) == BB)
++NumEdges;
}
assert(NumEdges && "Must be at least one edge from Pred to BB!");
// Add entries for all the phis.
BasicBlock::iterator PNI = BB->begin();
do {
unsigned AllocaNo = PhiToAllocaMap[APN];
// Add N incoming values to the PHI node.
for (unsigned i = 0; i != NumEdges; ++i)
APN->addIncoming(IncomingVals[AllocaNo], Pred);
// The currently active variable for this block is now the PHI.
IncomingVals[AllocaNo] = APN;
// Get the next phi node.
++PNI;
APN = dyn_cast<PHINode>(PNI);
if (APN == 0) break;
// Verify it doesn't already have entries for Pred. If it does, it is
// not being inserted by this mem2reg invocation.
HasPredEntries = false;
for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
if (APN->getIncomingBlock(i) == Pred) {
HasPredEntries = true;
break;
}
}
} while (!HasPredEntries);
}
}
// Don't revisit blocks.
if (!Visited.insert(BB)) return;
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
Instruction *I = II++; // get the instruction, increment iterator
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI != AllocaLookup.end()) {
Value *V = IncomingVals[AI->second];
// walk the use list of this load and replace all uses with r
LI->replaceAllUsesWith(V);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
// value
if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai != AllocaLookup.end()) {
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// Recurse to our successors.
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; i != TI->getNumSuccessors(); i++)
Worklist.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals));
}
/// PromoteMemToReg - Promote the specified list of alloca instructions into
/// scalar registers, inserting PHI nodes as appropriate. This function makes
/// use of DominanceFrontier information. This function does not modify the CFG
/// of the function at all. All allocas must be from the same function.
///
/// If AST is specified, the specified tracker is updated to reflect changes
/// made to the IR.
///
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominatorTree &DT, DominanceFrontier &DF,
AliasSetTracker *AST) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
SmallVector<AllocaInst*, 16> RetryList;
PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
// PromoteMem2Reg may not have been able to promote all of the allocas in one
// pass, run it again if needed.
std::vector<AllocaInst*> NewAllocas;
while (!RetryList.empty()) {
// If we need to retry some allocas, this is due to there being no store
// before a read in a local block. To counteract this, insert a store of
// undef into the alloca right after the alloca itself.
for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
BasicBlock::iterator BBI = RetryList[i];
new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
RetryList[i], ++BBI);
}
NewAllocas.assign(RetryList.begin(), RetryList.end());
RetryList.clear();
PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
NewAllocas.clear();
}
}